Pyrolysis can convert biomass and agro-residues to condensable volatiles (bio-oils), non-condensable gases, and biochar at moderate temperatures under free air/oxygen. A pyrolysis reactor is the key component. In this work, a high throughput pyrolysis reactor based on the highly effective heat transfer mechanism of ablation was developed. The reactor design was simple, allowing for easy construction and operation. A vacuum pump was used to remove air from a reaction chamber. The reaction chamber was cylindrical and made from alloy-steel with a maximum capacity of 120 L. The bottom side of the chamber was heated using a cooking gas flame. A rotating impeller was installed inside the horizontal chamber to enable ablative heat transfer. It was also equipped with a condenser unit to quickly condense volatiles into oils. Preliminary tests with palm shells (10-20 mm) and corncobs (120-200 mm) were conducted to produce bio-oil and bio-char. It was shown that this pyrolyzer system could produce high yields of bio-oil from corncobs (40%) and palm shells (50%) at 400 oC.

1.
T.
Kan
,
V.
Strezov
and
T. J.
Evans
,
Renew. Sustain. Energy Rev.
57
,
1126
1140
(
2016
).
2.
A. V.
Bridgwater
,
Biomass Bioenergy.
38
,
68
94
(
2012
).
3.
X.
Hu
, and
M.
Gholizadeh
,
J. Energy Chem.
39
.
109
143
(
2019
)
4.
A. V.
Bridgwater
,
Chem. Eng. J.
91
.
87
102
(
2003
).
5.
J.
Diebold
,
Specialists’ Workshop on Fast Pyrolysis of Biomass.
237
252
(
1980
).
6.
H.
Martin
,
J.
Lede
,
H. Z.
Li
,
J.
Villermaux
,
C.
Moyne
,
A.
Degiovanni
,
Inter. J. Heat Mass Transf
.
29
.
1407
1415
(
1986
).
7.
G. V. C.
Peacocke
, and
A. V.
Bridgwater
,
Biomass Bioenergy.
7
,
147
154
(
1994
)
8.
G.
Luo
,
D. S.
Chandler
,
L. C. A.
Anjos
,
R. J.
Eng
,
P.
Jia
, and
F. L. P.
Resende
,
Fuel.
194
,
229
238
(
2017
).
9.
J.
Lédé
,
J. Analy Appli Pyrolysis.
70
,
601
618
(
2003
).
10.
J.
Lédé
,
J.
Panagopoulos
,
H. Z.
Li
, and
J.
Villermaux
,
Fuel.
64
,
1514
1520
(
1985
).
11.
N.
Khuenkaeo
and
N.
Tippayawong
,
Chem. Eng. Commu.
207
,
153
160
(
2020
).
12.
N.
Khuenkaeo
,
B.
MacQueen
,
T.
Onsree
,
S.
Daiya
,
N.
Tippayawong
, and
J.
Lauterbach
,
RSC Adv.
10
,
34986
34995
(
2020
).
13.
N.
Khuenkaeo
,
S.
Phromphithak
,
T.
Onsree
,
S. R.
Naqvi
,
N.
Tippayawong
,
PLoS One.
16
,
1
13
,
2021
.
14.
J.
Shen
,
X. S.
Wang
,
M.
Garcia-Perez
,
D.
Mourant
,
M. J.
Rhodes
,
C. Z.
Li
,
Fuel.
88
,
1810
1817
(
2009
).
15.
Y.
Zhang
,
A. E.
Ghaly
,
B.
Li
,
Amer. J. Biochem. Biotech.
8
,
44
53
(
2012
).
16.
C. O.
Edmund
,
M. S.
Christopher
,
D. K.
Pascal
,
J. Chem. Eng. Mater. Sci.
5
,
1
6
(
2014
).
17.
N.
Khuenkaeo
and
N.
Tippayawong
,
IOP Conf. Series Earth Environ. Sci.
159
,
012037
(
2018
).
18.
J. H. I.
Lienhard
and
J. H. V
Lienhard
,
A Heat Transfer Textbook 5th edition
, (14 August 2020).
19.
W. N. R. W.
Isahak
,
M. W. M.
Hisham
,
M. A.
Yarmo
,
T. Y. Yun
Hin
,
Renew. Sustain. Energy Rev.
16
,
910
5923
(
2012
).
20.
S.
Mariyam
,
M.
Alherbawi
,
S.
Pradhan
,
T.
Al-Ansari
,
G.
McKay
,
Biomass Conver. Bioref.
0123456789
(
2023
).
This content is only available via PDF.
You do not currently have access to this content.