There is a growing interest in the field of brain-computer interface (BCI) that uses electroencephalography (EEG) to connect the brain to external devices. BCI aims to provide people with special needs the ability to make autonomous decisions in so-called “smart homes” defined as a regular home place equipped with smart phone related technologies. Smart homes enable the inhabitants to control household devices like turning on/off the lights, the fans, air conditioning, and T.V. or opening and closing doors and windows as well as monitoring smart phones. Knowing that a significant progress has been made on regular users for smart homes, it is highlighted that less attention is focused on those with special needs, with mobility issues or quadriplegia; novel inventions have been developed to address such mobility issues. The recent advancement of this new technology opens a plethora of possibilities for patients to use their brain waves to control artificial prosthetic arms and legs. The present paper is an overview of state-of-the-art studies that incorporate BCI in medical applications such as operating a robotic arm, smart home, and smart phones. These studies enhanced our understanding of the different uses of BCI. However, the majority of the studies had a small number of participants which limits the generalization of their findings. Second, the application of BCI in the majority of studies is still a prototype. This paper recommends increasing the number of participants in future studies and apply BCI technologies on real life situations.

1.
R.
Bousseta
,
I.
El Ouakouak
,
M.
Gharbi
, and
F.
Regragui
, “
EEG based brain computer interface for controlling a robot arm movement through thought
,”
Irbm
, vol.
39
, no.
2
, pp.
129
135
,
2018
.
2.
Y.
Xu
et al, “
Shared control of a robotic arm using non-invasive brain–computer interface and computer vision guidance
,”
Rob. Auton. Syst.
, vol.
115
, pp.
121
129
,
2019
.
3.
D. R.
Edla
,
K.
Mangalorekar
,
G.
Dhavalikar
, and
S.
Dodia
, “
Classification of EEG data for human mental state analysis using Random Forest Classifier
,”
Procedia Comput. Sci.
, vol.
132
, pp.
1523
1532
,
2018
.
4.
B. K.
Sovacool
and
D. D. F.
Del Rio
, “
Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies
,”
Renew. Sustain. energy Rev.
, vol.
120
, p.
109663
,
2020
.
5.
N.
Jamil
,
A. N.
Belkacem
,
S.
Ouhbi
, and
A.
Lakas
, “
Noninvasive electroencephalography equipment for assistive, adaptive, and rehabilitative brain–computer interfaces: a systematic literature review
,”
Sensors
, vol.
21
, no.
14
, p.
4754
,
2021
.
6.
A. K.
Ibrahim
,
M. M.
Hassan
, and
I. A.
Ali
, “
Smart Homes for Disabled People: A Review Study
,”
Sci. J. Univ. Zakho
, vol.
10
, no.
4
, pp.
213
221
,
2022
.
7.
D.
Millett
, “
Hans Berger: From psychic energy to the EEG
,”
Perspect. Biol. Med.
, vol.
44
, no.
4
, pp.
522
542
,
2001
.
8.
Z.
Balkis
,
Z.
Hussain
, and
I.
Iza
, “
Alpha and beta EEG brainwave signal classification technique: a conceptual study,” in
2014 IEEE 10th International Colloquium on Signal Processing and Its Applications (CSPA): Conference Proceedings, Kuala Lumpur, Malaysia
,
2014
, p.
233
.
9.
Qayssar A
Ahmed
and
Auns
Q
, “
A Biomedical Device for Early Detection of Symptoms of Mild Cognitive Impairment ( MCI ) and Alzheimer Disease ( AD ) A Biomedical Device for Early Detection of Symptoms of Mild Cognitive Impairment ( MCI ) and Alzheimer Disease ( AD )
,” no. Mci,
2021
, doi: .
10.
A. Q. H. A.-N.
Safa
L.
Kailan
1, Moneer K. Faraj2, “
SEGMENTATION AND CREATION OF BRAIN TUMOR MODEL BASED ON
,” vol.
63
, no.
01
, pp.
53
62
,
2023
.
11.
A. D. A.
Abdullah
and
A. Q.
Al-Neami
, “
Performance Evaluation of a New Dry-Contact Electrode for EEG Measurement
,”
2021 IEEE Int. Biomed. Instrum. Technol. Conf. Improv. Healthc. Technol. to Achieve Univers. Heal. Cover. IBITeC 2021
, pp.
119
123
,
2021
, doi: .
12.
Z.
Wan
,
R.
Yang
,
M.
Huang
,
N.
Zeng
, and
X.
Liu
, “
A review on transfer learning in EEG signal analysis
,”
Neurocomputing
, vol.
421
, pp.
1
14
,
2021
.
13.
J. N.
Acharya
,
A. J.
Hani
,
J.
Cheek
,
P.
Thirumala
, and
T. N.
Tsuchida
, “
American clinical neurophysiology society guideline 2: guidelines for standard electrode position nomenclature
,”
Neurodiagn. J.
, vol.
56
, no.
4
, pp.
245
252
,
2016
.
14.
A. D. A.
Abdullah
and
A. Q.
Al-Neami
, “
Performance evaluation of a new 3D printed dry-contact electrode for EEG signals measurement
,”
Indones. J. Electr. Eng. Comput. Sci.
, vol.
24
, no.
1
, pp.
287
294
,
2021
, doi: .
15.
P. A.
Abhang
,
B. W.
Gawali
, and
S. C.
Mehrotra
,
Introduction to EEG-and speech-based emotion recognition
.
Academic Press
,
2016
.
16.
N.
Korovesis
,
D.
Kandris
,
G.
Koulouras
, and
A.
Alexandridis
, “
Robot motion control via an EEG-based brain– computer interface by using neural networks and alpha brainwaves
,”
Electronics
, vol.
8
, no.
12
, p.
1387
,
2019
.
17.
M.
Bamdad
,
H.
Zarshenas
, and
M. A.
Auais
, “
Application of BCI systems in neurorehabilitation: a scoping review
,”
Disabil. Rehabil. Assist. Technol.
, vol.
10
, no.
5
, pp.
355
364
,
2015
.
18.
M.
TajDini
,
V.
Sokolov
,
I.
Kuzminykh
,
S.
Shiaeles
, and
B.
Ghita
, “
Wireless sensors for brain activity—a survey
,”
Electronics
, vol.
9
, no.
12
, p.
2092
,
2020
.
19.
J. R.
Wolpaw
et al, “
Brain-computer interface technology: a review of the first international meeting
,”
IEEE Trans. Rehabil. Eng.
, vol.
8
, no.
2
, pp.
164
173
,
2000
.
20.
H.
Esfandiari
et al, “
Introducing a brain-computer interface to facilitate intraoperative medical imaging control–a feasibility study
,”
BMC Musculoskelet. Disord.
, vol.
23
, no.
1
, p.
701
,
2022
.
21.
I.
Rejer
, “
EEG feature selection for BCI based on motor imaginary task
,”
Found. Comput. Decis. Sci.
, vol.
37
, no.
4
, pp.
283
292
,
2012
.
22.
S. L.
Kailan
,
A. Q. H.
Al-Neami
, and
M. K.
Faraj
, “Construction of brain model for neurosurgeons training based on 3D printing technology,” in
AIP Conference Proceedings
,
AIP Publishing
,
2023
.
23.
K.
Värbu
,
N.
Muhammad
, and
Y.
Muhammad
, “
Past, present, and future of EEG-based BCI applications
,”
Sensors
, vol.
22
, no.
9
, p.
3331
,
2022
.
24.
M.
Rashid
et al, “
Current status, challenges, and possible solutions of EEG-based brain-computer interface: a comprehensive review
,”
Front. Neurorobot.
, vol.
14
, p.
25
,
2020
.
25.
P.
de Lissa
,
S.
Sörensen
,
N.
Badcock
,
J.
Thie
, and
G.
McArthur
, “
Measuring the face-sensitive N170 with a gaming EEG system: A validation study
,”
J. Neurosci. Methods
, vol.
253
, pp.
47
54
,
2015
.
26.
O. E.
Krigolson
,
C. C.
Williams
,
A.
Norton
,
C. D.
Hassall
, and
F. L.
Colino
, “
Choosing MUSE: Validation of a low-cost, portable EEG system for ERP research
,”
Front. Neurosci.
, vol.
11
, p.
243179
,
2017
.
27.
D. S.
Nugroho
and
I.
Fahruzi
, “
An application real-time acquiring EEG signal from single lead electrode to recognize brain activity using Neurosky sensor
,” in
2019 International Seminar on Application for Technology of Information and Communication (iSemantic)
,
IEEE
,
2019
, pp.
400
404
.
28.
F.
Mohamed
,
S. F.
Ahmed
,
Z.
Ibrahim
, and
S.
Yaacob
, “
Comparison of features based on spectral estimation for the analysis of EEG signals in driver behavior
,” in
2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA)
,
IEEE
,
2018
, pp.
1
7
.
29.
A.
Hussein
,
M.
Adda
,
M.
Atieh
, and
W.
Fahs
, “
Smart home design for disabled people based on neural networks
,”
Procedia Comput. Sci.
, vol.
37
, pp.
117
126
,
2014
.
30.
B. M. M.
El-Basioni
,
S. M. Abd
El-Kader
, and
H. S.
Eissa
, “
Independent living for persons with disabilities and elderly people using smart home technology
,”
Int. J. Appl. or Innov. Eng. Manag.
, vol.
3
, no.
4
, pp.
11
28
,
2014
.
31.
Z. S.
Jabbar
,
A. Q.
Alneami
,
S. M.
Salih
, and
A. A.
Khawwam
, “
Liver fibrosis detection and classification for shear wave elastography (SWE) images based on convolutional neural network (CNN
),”
AIP Conf. Proc.
, vol.
2787
, no.
1
,
2023
, doi: .
32.
Z. S.
Jabbar
,
A. Q.
Al-Neami
,
A. A.
Khawwam
, and
S. M.
Salih
, “
Liver fibrosis processing, multiclassification, and diagnosis based on hybrid machine learning approaches
,”
Indones. J. Electr. Eng. Comput. Sci.
, vol.
29
, no.
3
, pp.
1614
1622
,
2023
, doi: .
33.
A smart home appliance control system for physically disabled peopleMtshali, Progress Khubisa, Freedom
,” in
2019 Conference on Information Communications Technology and Society (ICTAS)
,
IEEE
,
2019
, pp.
1
5
.
34.
J. D. &
D. W. Rebecca
Jamwal
,
Hannah K.
Jarman
,
Eve
Roseingrave
, “
Smart home and communication technology for people with disability: a scoping review
,”
Disabil. Rehabil. Assist. Technol.
, vol.
17
, no.
6
, pp.
624
644
,
2022
.
35.
M.
Aiello
and
S.
Dustdar
, “
Are our homes ready for services? a domotic infrastructure based on the web service stack
,”
Pervasive Mob. Comput.
, vol.
4
, no.
4
, pp.
506
525
,
2008
.
36.
M.
Floeck
and
L.
Litz
, “
Ageing in Place: Supporting Senior Citizens’ Independence with Ambient Assistive Living Technology
,”
MST NEWS
, vol.
6
, p.
34
,
2007
.
37.
R. J.
Robles
and
T.
Kim
, “
Applications, systems and methods in smart home technology: A
,”
Int. J. Adv. Sci. Technol.
, vol.
15
, pp.
37
48
,
2010
.
38.
E. A.
Shukur
,
A. Q.
Al-Neami
, and
F. Y.
Mohsen
, “
Design and Manufacturing of Cap System to Prevent Chemotherapy-Induced Alopecia
,” in
International Conference on Advances in Computing Research
,
Springer
,
2023
, pp.
108
119
.
39.
C.
Mao
and
D.
Chang
, “
Review of cross-device interaction for facilitating digital transformation in smart home context: a user-centric perspective
,”
Adv. Eng. Informatics
, vol.
57
, p.
102087
,
2023
.
40.
T. S.
Gunawan
et al, “
Prototype design of smart home system using internet of things
,”
Indones. J. Electr. Eng. Comput. Sci.
, vol.
7
, no.
1
, pp.
107
115
,
2017
.
41.
P.
Pelayo
,
H.
Murthy
, and
K.
George
, “
Brain-computer interface controlled robotic arm to improve quality of life
,” in
2018 IEEE International Conference on Healthcare Informatics (ICHI), IEEE
,
2018
, pp.
398
399
.
42.
S. R. A.
Jafri
et al, “
Wireless brain computer interface for smart home and medical system
,”
Wirel. Pers. Commun.
, vol.
106
, pp.
2163
2177
,
2019
.
43.
K.-T.
Sun
,
K.-L.
Hsieh
, and
S.-R.
Syu
, “
Towards an accessible use of a brain-computer interfaces-based home care system through a smartphone
,”
Comput. Intell. Neurosci.
, vol.
2020
, pp.
1
17
,
2020
.
44.
F.
Velasco-Álvarez
,
Á.
Fernández-Rodríguez
,
F.-J.
Vizcaíno-Martín
,
A.
Díaz-Estrella
, and
R.
Ron-Angevin
, “
Brain–computer interface (BCI) control of a virtual assistant in a smartphone to manage messaging applications
,”
Sensors
, vol.
21
, no.
11
, p.
3716
,
2021
.
45.
T.
Bin Nasir
,
M. A. M.
Lalin
,
K.
Niaz
, and
M. R.
Karim
, “
Design and implementation of eeg based home appliance control system
,” in
2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), IEEE
,
2021
, pp.
445
449
.
46.
I.
Chatziparasidis
and
I. K.
Sfampa
, “
Residential buildings with brain-computer interface functionality: An elevator case study
,”
Build. Serv. Eng. Res. Technol.
, vol.
43
, no.
2
, pp.
261
272
,
2022
.
47.
O.
Amanuel
and
Y.
Alazzawi
, “
Design and Implementation of EEG-Based Smart Structure
.,”
Int. J. Intell. Eng. Syst.
, vol.
16
, no.
1
,
2023
.
This content is only available via PDF.
You do not currently have access to this content.