Asthmatics often endure severe recurrent attacks, which repeatedly interfere with daily life. To meet this challenge, the Asthma Attack Prediction System (AAPS) was developed with a unique U-shaped design. The system comes with an attack prediction (AP) algorithm, using a combination of biosensors to predict attacks by monitoring cough sounds, throat movements, and heart rate – an alternative way to detect asthma severity an integrated smartphone is a remarkable feat. In emergencies, AAPS can mechanically alert hospitals through SMS, ensuring well-timed intervention. Calibration and validation against business gadgets revealed superb accuracy, with coronary heart charge measurements hitting 99.03% accuracy and cough sounds with throat movement sensors recording 93.75% and 95.83% accuracy, respectively. This gave an impressive 96.2% overall detection precisely. These consequences pass beyond previous studies and highlight advances in assault prediction, portability-making plans, and implementation.

1.
M.
Lommatzsch
, “
Asthma therapy concepts through the ages
,”
Allergol Select
, vol.
8
, pp.
1
5
,
2024
.
2.
E.
Wang
,
M. E.
Wechsler
,
T. N.
Tran
,
L. G.
Heaney
,
R. C.
Jones
,
A. N.
Menzies-Gow
, et al, “
Characterization of Severe Asthma Worldwide: Data From the International Severe Asthma Registry
,”
Chest
, vol.
157
, pp.
790
804
, Apr
2020
.
3.
K.
Vatanparvar
,
E.
Nemati
,
V.
Nathan
,
M. M.
Rahman
, and
J.
Kuang
, “
CoughMatch–Subject Verification Using Cough for Personal Passive Health Monitoring
,” in
2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC
),
Montreal, QC, Canada
,
2020
July, pp.
5689
5695
.
4.
R. V.
Sharan
,
U. R.
Abeyratne
,
V. R.
Swarnkar
,
S.
Claxton
,
C.
Hukins
, and
P.
Porter
, “
Predicting spirometry readings using cough sound features and regression
,”
Physiological measurement
, vol.
39
, p.
095001
,
2018
.
5.
L.
Freels
,
A.
Herman
,
S.
Lukas
,
A. H. Y.
Chan
,
C. J.
Pearce
,
J.
Arackal
, et al, “
Asthma control and associated risk factors among adults with current asthma: Findings from 2019 behavioral risk factor surveillance system asthma call-back survey
,”
Respiratory medicine
, vol.
221
, p.
107479
,
2024
.
6.
A.
Borchers
and
T.
Pieler
, “
Programming pluripotent precursor cells derived from Xenopus embryos to generate specific tissues and organs
,”
Genes (Basel)
, vol.
1
, pp.
413
26
, Nov 18
2010
.
7.
M. R.
van der Kamp
,
E. C.
Klaver
,
B. J.
Thio
,
J. M.
Driessen
,
F. H.
de Jongh
,
M.
Tabak
, et al, “
WEARCON: wearable home monitoring in children with asthma reveals a strong association with hospital based assessment of asthma control
,”
BMC medical informatics and decision making
, vol.
20
, pp.
1
12
,
2020
.
8.
G. A.
Khalid
,
M. I.
Abdulmawjod
, and
A.
Al-Bayaty
, “
A Comprehensive Analysis of Respiratory Patterns and Physiological Parameters in Asthma, Bronchitis, and Croup
Electrical Engineering Technical Journal
, vol.
1
, no.
1
,
35
49
,
2024
.
9.
K. P.
Exarchos
,
A.
Gogali
,
A.
Sioutkou
,
C.
Chronis
,
S.
Peristeri
, and
K.
Kostikas
, “
Validation of the portable Bluetooth® Air Next spirometer in patients with different respiratory diseases
,”
Respiratory research
, vol.
21
, pp.
1
7
,
2020
.
10.
H.
Rhee
,
S.
Miner
,
M.
Sterling
,
J. S.
Halterman
, and
E.
Fairbanks
, “
The development of an automated device for asthma monitoring for adolescents: methodologic approach and user acceptability
,”
JMIR mHealth and uHealth
, vol.
2
, p.
e3118
,
2014
.
11.
R. X. A.
Pramono
,
S. A.
Imtiaz
, and
E.
Rodriguez-Villegas
, “
A cough-based algorithm for automatic diagnosis of pertussis
,”
PloS one
, vol.
11
, p.
e0162128
,
2016
.
12.
R. X. A.
Pramono
,
S. A.
Imtiaz
, and
E.
Rodriguez-Villegas
, “
Automatic identification of cough events from acoustic signals
,” in
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC
),
Berlin, Germany
,
2019
July, pp.
217
220
.
13.
R. X. A.
Pramono
,
S. A.
Imtiaz
, and
E.
Rodriguez-Villegas
, “
Automatic cough detection in acoustic signal using spectral features
,” in
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC
),
Berlin, Germany
,
2019
, pp.
7153
7156
.
14.
T.
Otoshi
,
T.
Nagano
,
S.
Izumi
,
D.
Hazama
,
N.
Katsurada
,
M.
Yamamoto
, et al, “
A novel automatic cough frequency monitoring system combining a triaxial accelerometer and a stretchable strain sensor
,”
Scientific Reports
, vol.
11
, p.
9973
,
2021
.
15.
S. W.
Park
,
P. S.
Das
,
A.
Chhetry
, and
J. Y.
Park
, “
A flexible capacitive pressure sensor for wearable respiration monitoring system
,”
IEEE Sensors Journal
, vol.
17
, pp.
6558
6564
,
2017
.
16.
C.
Infante
,
D. B.
Chamberlain
,
R.
Kodgule
, and
R. R.
Fletcher
, “
Classification of voluntary coughs applied to the screening of respiratory disease
,” in
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC
),
Jeju Island, Korea
,
2017
July, pp.
1413
1416
.
17.
G.
Rudraraju
,
S.
Palreddy
,
B.
Mamidgi
,
N. R.
Sripada
,
Y. P.
Sai
,
N. K.
Vodnala
, et al, “
Cough sound analysis and objective correlation with spirometry and clinical diagnosis
,”
Informatics in Medicine Unlocked
, vol.
19
, p.
100319
,
2020
.
18.
J.
Monge-Álvarez
,
C.
Hoyos-Barceló
,
P.
Lesso
, and
P.
Casaseca-De-La-Higuera
, “
Robust detection of audio-cough events using local hu moments
,”
IEEE journal of biomedical and health informatics
, vol.
23
, pp.
184
196
,
2018
.
19.
A. O.
Popadina
,
A.-M.
Salah
, and
K.
Jalal
, “
Voice analysis framework for asthma-COVID-19 early diagnosis and prediction: AI-based mobile cloud computing application
,” in
2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus
),
St. Petersburg, Moscow, Russia
,
2021
, pp.
1803
1807
.
20.
J. V. O.
Rodrigues
,
M. P. G.
Pedroso
,
F. F. Barbosa
Silva
, and
R. G. Leão
Junior
, “
Performance evaluation of accelerometers ADXL345 and MPU6050 exposed to random vibrational input
,”
Research, Society and Development
, vol.
10
, p.
e286101523082
,
2021
.
21.
R. U.
Acevedo
,
L. O.
Sanchez
,
S. V.
Londono
,
E.
Mejia-Mejia
,
R. T.
Villa
, and
Y. M.
Goez
, “
Non-invasive assessment of sublingual microcirculation using flow derived from green light PPG: evaluation and reference values
,”
J Biomed Opt
, vol.
29
, p.
017001
, Jan
2024
.
22.
Y.
Zheng
,
Y.
Che
,
X.
Hu
,
X.
Sui
,
D.-I.
Stroe
, and
R.
Teodorescu
, “
Thermal state monitoring of lithium-ion batteries: Progress, challenges, and opportunities
,”
Progress in Energy and Combustion Science
, vol.
100
, p.
101120
,
2024
.
23.
G.
Phillips
,
H.
Teixeira
,
M. G.
Kelly
,
F. Salas
Herrero
,
G.
Varbiro
,
A. Lyche
Solheim
, et al, “
Setting nutrient boundaries to protect aquatic communities: The importance of comparing observed and predicted classifications using measures derived from a confusion matrix
,”
Sci Total Environ
, vol.
912
, p.
168872
, Feb 20
2024
.
24.
V.
Bansal
,
G.
Pahwa
, and
N.
Kannan
, “
Cough Classification for COVID-19 based on audio mfcc features using Convolutional Neural Networks
,” in
2020 IEEE international conference on computing, power and communication technologies (GUCON
),
2020
, pp.
604
608
.
25.
S. K.
Gharghan
and
H. A.
Hashim
, “
A comprehensive review of elderly fall detection using wireless communication and artificial intelligence techniques
,”
Measurement
, vol.
226
, p.
114186
,
2024
.
26.
A.
Hosseini
,
C. M.
Buonocore
,
S.
Hashemzadeh
,
H.
Hojaiji
,
H.
Kalantarian
,
C.
Sideris
, et al, “
Feasibility of a secure wireless sensing smartwatch application for the self-management of pediatric asthma
,”
Sensors
, vol.
17
, p.
1780
,
2017
.
27.
M. D.
Kruizinga
,
E.
Essers
,
F.
Stuurman
,
A.
Zhuparris
,
N.
van Eik
,
H. M.
Janssens
, et al, “
Technical validity and usability of a novel smartphone-connected spirometry device for pediatric patients with asthma and cystic fibrosis
,”
Pediatric pulmonology
, vol.
55
, pp.
2463
2470
,
2020
.
28.
C.
Crema
,
A.
Depari
,
A.
Flammini
,
E.
Sisinni
,
A.
Vezzoli
, and
P.
Bellagente
, “
Virtual Respiratory Rate Sensors: An Example of A Smartphone-Based Integrated and Multiparametric mHealth Gateway
,”
IEEE Transactions on Instrumentation and Measurement
, vol.
66
, pp.
2456
2463
,
2017
.
29.
S. A.
Gamel
,
E.
Hassan
,
N.
El-Rashidy
, and
F. M.
Talaat
, “
Exploring the effects of pandemics on transportation through correlations and deep learning techniques
,”
Multimed Tools Appl
, pp.
1
22
, Jun 7
2023
.
This content is only available via PDF.
You do not currently have access to this content.