Cardiovascular disease (CVD) is a life-threatening medical condition caused by high blood sugar, high blood pressure, alcohol, smoking, and congenital abnormalities. There are several ways to diagnose CVD, such as stethoscopes, electrocardiography (ECG), phonocardiography (PCG), and computed tomography (CT). Some of these devices are inaccurate and require medical expertise. In stethoscopes, the doctor’s skill determines heart sound interpretation and external disturbances can affect their effectiveness. Additionally, ECG and PCG cannot provide complete heart health information. CT scans, however, emit radiation that can harm patients. This study examines various CVD early detection and prediction methods to find the best one for patients and doctors. Previous research has identified methods, including artificial intelligence (AI) algorithms and wireless sensors. The study also seeks to identify the best model and examine CVD detection challenges. Comparing previous research, the modified scalp swarm optimization method and adaptive fuzzy neurological system (MSSO-ANFIS) had the highest rating accuracy, 97.45%. Researchers’ CVD detection difficulties were also highlighted in the paper. In conclusion, the use of echocardiography devices provides comprehensive and accurate information about the heart, including details such as the shape of the heart, the thickness of the heart muscle, and heart sounds.

1.
M. A.
Khan
and
F.
Algarni
, “
A Healthcare Monitoring System for the Diagnosis of Heart Disease in the IoMT Cloud Environment Using MSSO-ANFIS
,”
IEEE Access
, vol.
8
, pp.
122259
122269
,
2020
. doi:
2.
F.
Li
,
Z.
Zhang
,
L.
Wang
, and
W.
Liu
, “
Heart sound classification based on improved mel-frequency spectral coefficients and deep residual learning
,”
Front Physiol
, vol.
13
, p.
1084420
,
2022
. doi:
3.
Y.
Zeinali
and
S. T. A.
Niaki
, “
Heart sound classification using signal processing and machine learning algorithms
,”
Machine Learning with Applications
, vol.
7
,
2022
. doi:
4.
M. A.
Qureshi
,
K. N.
Qureshi
,
G.
Jeon
, and
F.
Piccialli
, “
Deep learning-based ambient assisted living for self-management of cardiovascular conditions
,”
Neural Computing and Applications
, vol.
34
, no.
13
, pp.
10449
10467
,
2021
. doi:
5.
M. K.
Nishitha
and
M. J. J. o. E. S.
Chittesh
, “
Perception of Heart Failures From Heart Sounds Using Neural Networks
,”
Journal of Engineering Sciences
, vol.
14
, no.
07
,
2023
.
6.
S.
Han
,
W.
Jeon
,
W.
Gong
, and
I. Y.
Kwak
, “
MCHeart: Multi-Channel-Based Heart Signal Processing Scheme for Heart Noise Detection Using Deep Learning
,”
Biology (Basel)
, vol.
12
, no.
10
, Sep 27
2023
. doi:
7.
B.
Omarov
,
N.
Saparkhojayev
,
S.
Shekerbekova
,
O.
Akhmetova
,
M.
Sakypbekova
,
G.
Kamalova
,
Z.
Alimzhanova
,
L.
Tukenova
, and
Z.
Akanova
, “
Artificial Intelligence in Medicine: Real Time Electronic Stethoscope for Heart Diseases Detection
,”
Computers, Materials & Continua
, vol.
70
, no.
2
, pp.
2815
2833
,
2022
. doi:
8.
X.
Bao
,
Y.
Xu
, and
E. N.
Kamavuako
, “
The Effect of Signal Duration on the Classification of Heart Sounds: A Deep Learning Approach
,”
Sensors (Basel)
, vol.
22
, no.
6
, Mar 15
2022
. doi:
9.
S.
Li
,
F.
Li
,
S.
Tang
, and
W.
Xiong
, “
A Review of Computer-Aided Heart Sound Detection Techniques
,”
Biomed Res Int
, vol.
2020
, p.
5846191
,
2020
. doi:
10.
K.
Tangvoraphonkchai
and
A.
Davenport
, “
Magnesium and Cardiovascular Disease
,”
Adv Chronic Kidney Dis
, vol.
25
, no.
3
, pp.
251
260
, May
2018
. doi:
11.
R. E.
Nielsen
,
J.
Banner
, and
S. E.
Jensen
, “
Cardiovascular disease in patients with severe mental illness
,”
Nat Rev Cardiol
, vol.
18
, no.
2
, pp.
136
145
, Feb
2021
. doi:
12.
A. I.
Humayun
,
S.
Ghaffarzadegan
,
M. I.
Ansari
,
Z.
Feng
, and
T.
Hasan
, “
Towards Domain Invariant Heart Sound Abnormality Detection Using Learnable Filterbanks
,”
IEEE J Biomed Health Inform
, vol.
24
, no.
8
, pp.
2189
2198
, Aug
2020
. doi:
13.
H.
Thomas
,
J.
Diamond
,
A.
Vieco
,
S.
Chaudhuri
,
E.
Shinnar
,
S.
Cromer
,
P.
Perel
,
G. A.
Mensah
,
J.
Narula
,
C. O.
Johnson
,
G. A.
Roth
, and
A. E.
Moran
, “
Global Atlas of Cardiovascular Disease 2000-2016: The Path to Prevention and Control
,”
Glob Heart
, vol.
13
, no.
3
, pp.
143
163
, Sep
2018
. doi:
14.
I. L.
Pina
,
K. E.
Di Palo
, and
H. O.
Ventura
, “
Psychopharmacology and Cardiovascular Disease
,”
J Am Coll Cardiol
, vol.
71
, no.
20
, pp.
2346
2359
, May 22
2018
. doi:
15.
A. K.
Gárate-Escamila
,
A. Hajjam
El Hassani
, and
E.
Andrès
, “
Classification models for heart disease prediction using feature selection and PCA
,”
Informatics in Medicine Unlocked
, vol.
19
,
2020
. doi:
16.
S. N.
Ali
,
S. B.
Shuvo
,
M. I. S.
Al-Manzo
,
A.
Hasan
, and
T.
Hasan
, “
An End-to-End Deep Learning Framework for Real-Time Denoising of Heart Sounds for Cardiac Disease Detection in Unseen Noise
,”
IEEE Access
, vol.
11
, pp.
87887
87901
,
2023
. doi:
17.
M.
Deng
,
T.
Meng
,
J.
Cao
,
S.
Wang
,
J.
Zhang
, and
H.
Fan
, “
Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
,”
Neural Netw
, vol.
130
, pp.
22
32
, Oct
2020
. doi:
18.
X.
Zhang
,
D.
Maddipatla
,
B. B.
Narakathu
,
B. J.
Bazuin
, and
M. Z.
Atashbar
, “
Development of a Novel Wireless Multi-Channel Stethograph System for Monitoring Cardiovascular and Cardiopulmonary Diseases
,”
IEEE Access
, vol.
9
, pp.
128951
128964
,
2021
. doi:
19.
H.
Ghaemmaghami
,
N.
Hussain
,
K.
Tran
,
A.
Carey
,
S.
Hussain
,
F.
Syed
,
A. J.
Sinskey
,
K.
O’Hashi
, and
J.
Sperling
, “
Automatic Segmentation and Classification of Cardiac Cycles Using Deep Learning and a Wireless Electronic Stethoscope
,” presented at
the 2017 IEEE Life Sciences Conference (LSC
),
Sydney, NSW, Australia
,
13-15 December 2017
,
2017
. doi:
20.
M. E. H.
Chowdhury
,
A.
Khandakar
,
K.
Alzoubi
,
S.
Mansoor
, M. T. A,
M. B. I.
Reaz
, and
N.
Al-Emadi
, “
Real-Time Smart-Digital Stethoscope System for Heart Diseases Monitoring
,”
Sensors (Basel)
, vol.
19
, no.
12
, Jun 20
2019
. doi:
21.
J. P.
Boehmer
,
R.
Hariharan
,
F. G.
Devecchi
,
A. L.
Smith
,
G.
Molon
,
A.
Capucci
,
Q.
An
,
V.
Averina
,
C. M.
Stolen
,
P. H.
Thakur
,
J. A.
Thompson
,
R.
Wariar
,
Y.
Zhang
, and
J. P.
Singh
, “
A Multisensor Algorithm Predicts Heart Failure Events in Patients With Implanted Devices: Results From the MultiSENSE Study
,”
JACC Heart Fail
, vol.
5
, no.
3
, pp.
216
225
, Mar
2017
. doi:
22.
R. S.
Patil
,
T.
Arjariya
, and
M.
Gangwar
, “
Detection of Cardiac Abnormalities and Heart Disease Using Machine Learning Techniques
,”
International Journal of Intelligent Systems and Applications in Engineering (IJISAE)
, vol.
11
, no.
5s
, pp.
598
605
,
2023
. doi: https://www.ijisae.org/index.php/IJISAE/article/view/2821
23.
S.
Latif
,
M.
Usman
,
R.
Rana
, and
J.
Qadir
, “
Phonocardiographic Sensing Using Deep Learning for Abnormal Heartbeat Detection
,”
IEEE Sensors Journal
, vol.
18
, no.
22
, pp.
9393
9400
,
2018
. doi:
24.
T. Sinha
Roy
,
J. K.
Roy
, and
N.
Mandal
, “
Conv-Random Forest-Based IoT: A Deep Learning Model Based on CNN and Random Forest for Classification and Analysis of Valvular Heart Diseases
,”
IEEE Open Journal of Instrumentation and Measurement
, vol.
2
, pp.
1
17
,
2023
. doi:
25.
S. P.
Patro
,
N.
Padhy
, and
D.
Chiranjevi
, “
Ambient assisted living predictive model for cardiovascular disease prediction using supervised learning
,”
Evolutionary Intelligence
, vol.
14
, no.
2
, pp.
941
969
,
2020
. doi:
26.
L.
Kumar
,
C.
Anitha
,
V. N.
Ghodke
,
N.
Nithya
,
V. A.
Drave
, and
A.
Farhana
, “
Deep Learning Based Healthcare Method for Effective Heart Disease Prediction
,”
EAI Endorsed Transactions on Pervasive Health and Technology
, vol.
9
,
2023
. doi:
27.
S.
Rajanna
,
C.
Jayaramaiah
,
R.
Sridhar
,
P. H.
Chandrappa
, and
R. T. J. R. d. I. A.
Venkatesh
, “
Fuzzy Inference with Enhanced Convolutional Neural Network Based Classification Framework for Predicting Heart Attack Using Sensor Data
,”
Revue d’Intelligence Artificielle
, vol.
37
, no.
1
, p.
93
,
2023
. doi:
28.
M. G.
Veerabaku
,
J.
Nithiyanantham
,
S.
Urooj
,
A. Q.
Md
,
A. K.
Sivaraman
, and
K. F.
Tee
, “
Intelligent Bi-LSTM with Architecture Optimization for Heart Disease Prediction in WBAN through Optimal Channel Selection and Feature Selection
,”
Biomedicines
, vol.
11
, no.
4
, Apr 13
2023
. doi:
29.
D. B.
Springer
,
L.
Tarassenko
, and
G. D.
Clifford
, “
Logistic Regression-HSMM-Based Heart Sound Segmentation
,”
IEEE Trans Biomed Eng
, vol.
63
, no.
4
, pp.
822
32
, Apr
2016
. doi:
30.
G.
Manogaran
,
R.
Varatharajan
, and
M. K.
Priyan
, “
RETRACTED ARTICLE: Hybrid Recommendation System for Heart Disease Diagnosis based on Multiple Kernel Learning with Adaptive Neuro-Fuzzy Inference System
,”
Multimedia Tools and Applications
, vol.
77
, no.
4
, pp.
4379
4399
,
2017
. doi:
31.
T. E.
Chen
,
S. I.
Yang
,
L. T.
Ho
,
K. H.
Tsai
,
Y. H.
Chen
,
Y. F.
Chang
,
Y. H.
Lai
,
S. S.
Wang
,
Y.
Tsao
, and
C. C.
Wu
, “
S1 and S2 Heart Sound Recognition Using Deep Neural Networks
,”
IEEE Trans Biomed Eng
, vol.
64
, no.
2
, pp.
372
380
, Feb
2017
. doi:
32.
P.
Mathur
,
S.
Srivastava
,
X.
Xu
, and
J. L.
Mehta
, “
Artificial Intelligence, Machine Learning, and Cardiovascular Disease
,”
Clin Med Insights Cardiol
, vol.
14
, p.
1179546820927404
,
2020
. doi:
33.
S.
Arooj
,
S. U.
Rehman
,
A.
Imran
,
A.
Almuhaimeed
,
A. K.
Alzahrani
, and
A.
Alzahrani
, “
A Deep Convolutional Neural Network for the Early Detection of Heart Disease
,”
Biomedicines
, vol.
10
, no.
11
, Nov 3
2022
. doi:
34.
F. S.
Alotaibi
, “
Implementation of machine learning model to predict heart failure disease
,”
International Journal of Advanced Computer Science and Applications
, vol.
10
, no.
6
,
2019
. doi:
35.
F.
Dong
,
K.
Qian
,
Z.
Ren
,
A.
Baird
,
X.
Li
,
Z.
Dai
,
B.
Dong
,
F.
Metze
,
Y.
Yamamoto
, and
B.
Schuller
, “
Machine Listening for Heart Status Monitoring: Introducing and Benchmarking HSS - the Heart Sounds Shenzhen Corpus
,”
IEEE J Biomed Health Inform
, Nov 22
2019
. doi:
36.
R. C.
Ripan
,
I. H.
Sarker
,
S. M. M.
Hossain
,
M. M.
Anwar
,
R.
Nowrozy
,
M. M.
Hoque
, and
M. H.
Furhad
, “
A Data-Driven Heart Disease Prediction Model Through K-Means Clustering-Based Anomaly Detection
,”
SN Computer Science
, vol.
2
, no.
2
,
2021
. doi:
37.
C.
Potes
,
S.
Parvaneh
,
A.
Rahman
, and
B.
Conroy
, “
Ensemble of Feature-based and Deep learning-based Classifiers for Detection of Abnormal Heart Sounds
,” presented at
the 2016 Computing in Cardiology Conference (CinC
),
Vancouver, BC, Canada
,
2016
.
38.
K. K. L.
Wong
,
G.
Fortino
, and
D.
Abbott
, “
Deep learning-based cardiovascular image diagnosis: A promising challenge
,”
Future Generation Computer Systems
, vol.
110
, pp.
802
811
,
2020
. doi:
39.
H.
Ren
,
H.
Jin
,
C.
Chen
,
H.
Ghayvat
, and
W.
Chen
, “
A Novel Cardiac Auscultation Monitoring System Based on Wireless Sensing for Healthcare
,”
IEEE J Transl Eng Health Med
, vol.
6
, p.
1900312
,
2018
. doi:
40.
P.
Sharma
,
S. A.
Imtiaz
, and
E.
Rodriguez-Villegas
, “
An Algorithm for Heart Rate Extraction From Acoustic Recordings at the Neck
,”
IEEE Trans Biomed Eng
, vol.
66
, no.
1
, pp.
246
256
, Jan
2019
. doi:
41.
M.
AlMusallam
and
A.
Soudani
, “
Design of embedded atrial fibrillation detection scheme for wireless body area networks
,”
International Journal of Embedded Systems
, vol.
11
, no.
1
, pp.
28
37
,
2019
. doi:
42.
H.
Gharsellaoui
,
I.
Khemaissia
,
A. J. J. o. A. I.
AlShahrani
, and
H.
Computing
, “
New approach for cardiac patients based on pacemaker device
,”
Journal of Ambient Intelligence and Humanized Computing
, pp.
1
9
,
2021
. doi:
43.
A. J. P. P.
Dao
, “
Wireless PC-based phonocardiograph and diagnosis
,”
PeerJ Publishing
, vol.
2
, p.
e559v1
,
2014
. doi:
44.
C.
Liu
,
D.
Springer
,
Q.
Li
,
B.
Moody
,
R. A.
Juan
,
F. J.
Chorro
,
F.
Castells
,
J. M.
Roig
,
I.
Silva
,
A. E. W.
Johnson
,
Z.
Syed
,
S. E.
Schmidt
,
C. D.
Papadaniil
,
L.
Hadjileontiadis
,
H.
Naseri
,
A.
Moukadem
,
A.
Dieterlen
,
C.
Brandt
,
H.
Tang
,
M.
Samieinasab
,
M. R.
Samieinasab
,
R.
Sameni
,
R. G.
Mark
, and
G. D.
Clifford
, “
An open access database for the evaluation of heart sound algorithms
,”
Physiol Meas
, vol.
37
, no.
12
, pp.
2181
2213
, Dec
2016
. doi:
45.
J.
Lin
,
R.
Fu
,
X.
Zhong
,
P.
Yu
,
G.
Tan
,
W.
Li
,
H.
Zhang
,
Y.
Li
,
L.
Zhou
, and
C.
Ning
, “
Wearable sensors and devices for real-time cardiovascular disease monitoring
,”
Cell Reports Physical Science
, vol.
2
, no.
8
,
2021
. doi:
46.
M.
Alkhodari
and
L.
Fraiwan
, “
Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings
,”
Comput Methods Programs Biomed
, vol.
200
, p.
105940
, Mar
2021
. doi:
47.
K.
Saikumar
,
V.
Rajesh
,
G.
Srivastava
, and
J. C.
Lin
, “
Heart disease detection based on internet of things data using linear quadratic discriminant analysis and a deep graph convolutional neural network
,”
Front Comput Neurosci
, vol.
16
, p.
964686
,
2022
. doi:
48.
A. S.
Shahad
,
G. Sadik
Kamel
,
F. M.
Jinan
, and
K. Inas
Jawad
, “
Lung Diseases Diagnosis-Based Deep Learning Methods: A Review
,”
Journal of Techniques
, vol.
5
, no.
3
, pp.
158
173
,
2023
. doi:
49.
H. A.
Sameer
,
A. H.
Mutlag
, and
S. K.
Gharghan
, “
CT-Scan Method-based Artificial Neural Network for Diagnosis of COVID-19
,”
Journal of Techniques
, vol.
4
, no.
4
,
2022
. doi:
50.
A.
Aldelemy
and
R. A.
Abd-Alhameed
, “
Binary Classification of Customer’s Online Purchasing Behavior Using Machine Learning
,”
Journal of Techniques
, vol.
5
, no.
2
, pp.
163
186
,
2023
. doi:
51.
X.
Zhou
,
X.
Wang
,
X.
Li
,
Y.
Zhang
,
Y.
Liu
,
J.
Wang
,
S.
Chen
,
Y.
Wu
,
B.
Du
,
X.
Wang
,
X.
Sun
, and
K.
Sun
, “
A novel 1-D densely connected feature selection convolutional neural network for heart sounds classification
,”
Ann Transl Med
, vol.
9
, no.
24
, p.
1752
, Dec
2021
. doi:
52.
F. Bismark
Atta
,
B.
Claudia
, and
A. A. A.
Raed
, “
The Impact of the Internet of Things (IoT) on Healthcare Delivery: A Systematic Literature Review
,”
Journal of Techniques
, vol.
5
, no.
3
, pp.
84
91
,
2023
. doi:
53.
K.
Ndlovu
,
M.
Mars
, and
R. E. J. B. H. S. R.
Scott
, “
Interoperability frameworks linking mHealth applications to electronic record systems
,”
BMC Health Services Research
vol.
21
, no.
1
, p.
459
,
2021
. doi:
54.
A.
Dutta
,
T.
Batabyal
,
M.
Basu
, and
S. T. J. E. S. w. A.
Acton
, “
An efficient convolutional neural network for coronary heart disease prediction
,”
Expert Systems With Applications
, vol.
159
, p.
113408
,
2020
. doi:
55.
S.
Gerke
,
T.
Minssen
, and
G.
Cohen
, “
Ethical and legal challenges of artificial intelligence-driven healthcare
,” in
Artificial intelligence in healthcare: Elsevier
,
2020
, pp.
295
336
. doi:
56.
J. M.
Durán
and
K. R. J. J. o. M. E.
Jongsma
, “
Who is afraid of black box algorithms? On the epistemological and ethical basis of trust in medical AI
,”
Journal of Medical Ethics
,
2021
. doi:
57.
K.
Seetharam
,
S.
Shrestha
, and
P. P. J. C. t. o. i. c. m.
Sengupta
, “
Artificial intelligence in cardiovascular medicine
,”
Current Treatment Options in Cardiovascular Medicine
, vol.
21
, pp.
1
14
,
2019
. doi:
58.
M.
Van Hartskamp
,
S.
Consoli
,
W.
Verhaegh
,
M.
Petkovic
, and
A. J. I. j. o. m. r.
Van de Stolpe
, “
Artificial intelligence in clinical health care applications
,”
Interactive Journal of Medical Research
, vol.
8
, no.
2
, p.
e12100
,
2019
. doi:
59.
G. Asaad
Yaseen
,
S. K.
Gharghan
,
A. H. M.
Mutlag
, and
N.
Rosdiadee
, “
Wireless Sensor Network-Based Artificial Intelligent Irrigation System: Challenges and Limitations
,”
Journal of Techniques
, vol.
5
, no.
3
, pp.
26
41
,
2023
. doi:
60.
I. H. J. S. C. S.
Sarker
, “
Ai-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems
,”
SN Computer Science
, vol.
3
, no.
2
, p.
158
,
2022
. doi:
61.
M.
Barrett
,
J.
Boyne
,
J.
Brandts
,
H.-P. Brunner-La
Rocca
,
L.
De Maesschalck
,
K.
De Wit
,
L.
Dixon
,
C.
Eurlings
,
D.
Fitzsimons
, and
O. J. E. J.
Golubnitschaja
, “
Artificial intelligence supported patient self-care in chronic heart failure: a paradigm shift from reactive to predictive, preventive and personalised care
,”
EPMA Journal
vol.
10
, pp.
445
464
,
2019
. doi:
This content is only available via PDF.
You do not currently have access to this content.