Of the multi-carrier techniques under development is the Generalized Frequency Division Multiplexing (GFDM) which shows great potential and practicality, representing a departure from conventional modem schemes in a fairly unique and innovative manner. An integral aspect of GFDM is the matrix of subcarriers and sub-symbols that use spectral filtering, accomplished using an efficient pulse-shaping technique. Such a technique allows GFDM to retain signal characteristics in the frequency and time domains, thus ensuring effective suppression and spectral efficiency. Furthermore, this approach leads to a substantial decrease in Out-Of-Band (OOB) emissions. A major benefit that GFDM brings about is that it can provide a lower peak ratio (PAPR), which is compared with traditional OFDM. In addition to these developments, GFDM encounters one great challenge: the high complexity of the system and trouble in Bit Error Rate (BER) maintenance, which is a critical factor for ensuring correct communication. The current project is devoted to considering the practicability and efficacy of GFDM for the forthcoming mobile systems in particular. This page focuses on the performance enhancements achievable via combining Polar Codes (PC) as a coding technique within the GFDM architecture. We reasoned out the cases with Additive White Gaussian Noise (AWGN) and Rician fading channels. The next point is the efficiency of Zero Forcing (ZF) as a channel estimation method and how it is compared to conventional Orthogonal Frequency Division Multiplexing (OFDM) systems. Using this investigative discussion, we plan to draw a line connecting the enhanced GFDM algorithms with the adoption of the latest coding and estimation techniques, which will be the inevitable step to the next-generation wireless communication systems of the future. Adding PC & ZF to GFDM involves a process of using polar codes to improve BER by 0.1 at 16 dB. The new improvements are derived from different successful methods that pave the way for GFDM to be part of future generations.

1.
Y.
Li
,
K.
Niu
, and
C.
Dong
, “
Polar-Coded GFDM Systems
,”
IEEE Access
, vol.
7
. pp.
149299
149307
, (
2019
). doi: .
2.
J.
Yli-Kaakinen
,
A.
Loulou
,
T.
Levanen
,
K.
Pajukoski
,
A.
Palin
,
M.
Renfors
,
M.
Valkama
., “
Frequency-Domain Signal Processing for Spectrally-Enhanced CP-OFDM Waveforms in 5G New Radio
,”
IEEE Trans. Wirel. Commun
., vol.
20
, no.
10
, pp.
6867
6883
, (
2021
), doi: .
3.
A. H. A.
Kareem
, “
Performance Evaluation of PSK All optical OFDM System Based on Arrayed Waveguide Grating under Different Weather Conditions
,”
Int. J. Microw. Opt. Technol
., vol.
15
, no.
1
, pp.
85
94
, (
2020
).
4.
A. H. A.
Kareem
, “
Design and Comprehensive Investigation of High Capacity Communication System Based on All Optical Orthogonal Frequency Division Multiplexing Processing
.,”
Int. J. Intell. Eng. Syst
., vol.
13
, no.
4
, (
2020
).
5.
A. H. A.
Kareem
and
I. A.
Murdas
, “
A Comprehensive Survey of Fiber Impairment Mitigation Technologies in High Capacity Systems
,” in
2022 Muthanna International Conference on Engineering Science and Technology (MICEST),
IEEE, (
2022
). pp.
65
70
.
6.
M.
Dhuheir
and
S.
Öztürk
, “
Polar codes analysis of 5G systems
,” in
2018 6th International Conference on Control Engineering & Information Technology (CEIT)
, IEEE, (
2018
), pp.
1
6
.
7.
V.
Bioglio
,
C.
Condo
, and
I.
Land
, “
Design of polar codes in 5G new radio
,”
IEEE Commun. Surv. Tutorials
, vol.
23
, no.
1
, pp.
29
40
, (
2020
).
8.
H. M. H.
Al-Rikabi
,
M. A. M.
Al-Ja’afari
,
A. H.
Ali
, and
S. H.
Abdulwahed
, “
Generic model implementation of deep neural network activation functions using GWO-optimized SCPWL model on FPGA
,”
Microprocess. Microsyst
., vol.
77
, p. 103141, (
2020
).
9.
M.
Abdulmahdi
,
A. H.
Ali
,
L. A.
Abdul-Rahaim
, and
A. T.
Alhasani
, “
IoT System of Medical Equipment Monitoring and Ambulance Tracking
,” in
2023 6th International Conference on Engineering Technology and its Applications (IICETA),
IEEE, (
2023
), pp.
571
574
.
10.
M. A. T.
Alrubei
,
A. H.
Ali
,
Y. J. K.
Nukhailawi
,
M. A. M.
Al-Ja’afari
, and
S. H.
Abdulwahed
, “
Ulcerative Colitis Diagnosis Based on Artificial Intelligence System
,”
J. Univ. Babylon Eng. Sci
., vol.
28
, pp.
92
98
, (
2020
).
11.
F.
Li
,
L.
Zhao
,
K.
Zheng
, and
J.
Wang
, “
A interference-free transmission scheme for GFDM system
,” in
2016 IEEE Globecom Workshops (GC Wkshps),
IEEE, (
2016
), pp.
1
6
.
12.
S. P.
Valluri
and
V. V
Mani
, “
Receiver design for UW-GFDM systems
,” in
2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC),
IEEE, (
2018
), pp.
588
593
.
13.
J.
Zhong
,
G.
Chen
,
J.
Mao
,
S.
Dang
, and
P.
Xiao
, “
Iterative frequency domain equalization for MIMO-GFDM systems
,”
IEEE Access,
vol.
6
, pp.
19386
19395
, (
2018
).
14.
S. P.
Valluri
,
K.
Vejandla
, and
V. V.
Mani
, “
Low complex implementation of GFDM system using USRP
,”
IET Commun
., vol.
14
, no.
13
, pp.
2060
2067
, (
2020
).
15.
M.
Turhan
,
E.
Öztürk
, and
H. A.
Çırpan
, “
Deep convolutional learning-aided detector for generalized frequency division multiplexing with index modulation
,” in
2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC),
IEEE, (
2019
), pp.
1
6
.
16.
Y.
Yıldırım
,
S.
Özer
, and
H. A.
Çırpan
, “
Deep receiver design for multi-carrier waveforms using cnns
,” in
2020 43rd International Conference on Telecommunications and Signal Processing (TSP),
IEEE, (
2020
), pp.
31
36
.
17.
R. A.
Kumar
and
S.
Prasad
, “
Enhanced diversity gain of subcarrier index modulated MIMO-GFDM using constellation precoding technique for 5G
,” (
2021
).
18.
S. S.
Pradeep Kumar
,
C.
Agees Kumar
, and
R.
Jemila Rose
, “
An efficient SLM technique based on chaotic biogeography-based optimization algorithm for PAPR reduction in GFDM waveform
,”
Autom. časopis za Autom. Mjer. Elektron. računarstvo i Komun
., vol.
64
, no.
1
, pp.
93
103
, (
2023
).
19.
K. A.
Bouslam
,
J.
Amadid
,
F.
Bennioui
,
D.
Cherij
,
R.
Iqdour
, and
A.
Zeroual
, “
JAYA algorithm based selective mapping for PAPR reduction in GFDM systems
,” (
2023
).
20.
M. J. M.
Ameen
and
S. S.
Hreshee
, “
Securing Physical Layer of 5G Wireless Network System over GFDM Using Linear Precoding Algorithm for Massive MIMO and Hyperchaotic QRDecomposition
.,”
Int. J. Intell. Eng. Syst
., vol.
15
, no.
5
, (
2022
).
21.
A. H.
Ali
and
S. S.
Hreshee
, “
Comparing the GFDM Transceiver System to OFDM
.” pp.
539
542
,
2024
. doi: .
22.
H. A.
bAmeer
,
M. A.
Mohammedali
,
L. A.
Abdul-Rahaim
, and
I. H.
Al-Kharsan
, “
Design of Surgical Arm Robot Based on Cloud Computing
,” in
2022 5th International Conference on Engineering Technology and its Applications (IICETA),
IEEE, (
2022
), pp.
289
293
.
23.
A. H
Ali
and
S. S
Hreshee
, “
Developed PC-GFDM based on interleaver
,”
Int. J. Nonlinear Anal. Appl.,
vol.
14
, no.
1
, pp.
3169
3177
, (
2023
).
24.
A.
Ali
and
S.
Hreshee
, “
Intelligent Optimization of PC-GFDM Transceiver
.,”
Int. J. Intell. Eng. Syst
., vol.
16
, no.
5
, (
2023
).
25.
M. J. M.
Ameen
and
S. S. H.
Hreshee
, “
Hyperchaotic modulo operator encryption technique for massive multiple input multiple output generalized frequency division multiplexing system
,”
Int. J. Electr. Eng. Informatics
, vol.
14
, no.
2
, pp.
311
329
, (
2022
).
26.
A. H.
Ali
, “
GFDM Pulse Shaping Optimization Based Genetic Algorithm
,”
J. Univ. Babylon Eng. Sci
., pp.
29
39
, (
2023
).
27.
M.-C.
Chiu
, “
Interleaved polar (I-Polar) codes
,”
IEEE Trans. Inf. Theory,
vol.
66
, no.
4
, pp.
2430
2442
, (
2020
).
28.
L.
Dai
,
L.
Huang
,
Y.
Bai
,
Y.
Liu
, and
Z.
Liu
, “
CRC-Aided Belief Propagation with Permutated Graphs Decoding of Polar Codes
,” in
2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT),
IEEE, (
2020
), pp.
445
448
.
29.
A. H.
Ali
,
M. A. M.
Al-Ja’afari
, and
S. H.
Abdulwahed
, “
Performance assessment of antenna array for an unmanned air vehicle
,”
Int. J. Electr. Comput. Eng
., vol.
10
, no.
3
, p.
2579
, (
2020
).
30.
M. M.
Al-Ja’afari
,
A.
Ali
,
S.
Abdulwahed
, and
H.
Al-Rikabi
, “
Novel vss-nlms algorithm for adaptive equalizer under complex dynamic wireless channel
,”
J. Theor. Appl. Inf. Technol.,
vol.
96
, pp.
6558
6569
, (
2018
).
31.
A. H.
Ali
and
S. S.
Hreshee
, “
GFDM TRANSCEIVER BASED ON ANN CHANNEL ESTIMATION
,”
Kufa J. Eng
., vol.
14
, no.
1
, pp.
33
49
, (
2023
).
32.
M.
Akhondi
and
M. A.
Alirezapouri
, “
A modified ZF algorithm for signal detection in an underwater MIMO STBC-OFDM acoustic communication system
,”
Ann. Telecommun
., pp.
1
17
, (
2023
).
33.
W.
Ozan
, “
Non-Orthogonal Signal and System Design for Wireless Communications
.” UCL (
University College London
), (
2020
).
34.
A.
Farhang
,
N.
Marchetti
, and
L. E.
Doyle
, “
Low-complexity modem design for GFDM
,”
IEEE Trans. Signal Process
., vol.
64
, no.
6
, pp.
1507
1518
, (
2015
).
This content is only available via PDF.
You do not currently have access to this content.