In this study, the mechanical properties of epoxy composites reinforced with sisal fibres and rice husk particles have been carefully examined. Tensile, impact, flexural, and hardness tests were used to evaluate the performance of these composite materials with an emphasis on how varied reinforcement levels affected their mechanical characteristics. According to the tensile test findings, the tensile strength increased noticeably, with pure epoxy recording 65 MPa. Sisal fibres improved the tensile strength to 102 MPa, while 1% nano-rice husk particles boosted it to 103 MPa. The results were impressive, with tensile strengths of 140 MPa, 143 MPa, and 152 MPa for additions of 1%, 2%, and 4%, respectively, of rice husk reinforcement. Impact resistance has also significantly increased, with pure epoxy having an impact energy of 5.6 kJ/m2. The Charpy impact strength was improved by the addition of sisal fibres to 8.2 kJ/m2, and by the addition of 1% nano-rice husk particles to 8.5 kJ/m2. The addition of rice husk reinforcement raised the results to 10.4, 12.1 kJ/m2, and 13.7 kJ/m2 with additions of 1%, 2%, and 4%, respectively. The flexural testing demonstrated the enhanced capacity of these composites to withstand bending stresses. Flexural strength of pure epoxy was 70 MPa; sisal fibres enhanced this value to 94 MPa; and 1% nano-rice husk particles increased this value to 96 MPa. Flexural strengths increased to 115 MPa, 121 MPa, and 135 MPa, respectively, when amounts of rice husk reinforcement increased to 1%, 2%, and 4%. Furthermore, the hardness levels significantly increased, with pure epoxy reaching an 80 Shore D. The inclusion of sisal fibres and nano-rice husk particles raised the hardness levels to 88 Shore D and 90 Shore D, respectively. With the addition of rice husk reinforcement at various percentages, hardness values climbed to 95 Shore D, 96 Shore D, and 97 Shore D. These results demonstrate the fascinating potential of these composites for a variety of applications and offer a novel strategy for developing high-performance, environmentally friendly materials. Integration of natural fibres, nano-reinforcements, and agro-waste materials is an attractive new approach for the advancement of materials science and engineering.

1.
Srisuwan
,
S.
,
Prasoetsopha
,
N.
,
Suppakarn
,
N.
, &
Chumsamrong
,
P.
(
2014
).
The effects of alkalized and silanized woven sisal fibers on mechanical properties of natural rubber modified epoxy resin
.
Energy Procedia
,
56
(
C
),
19
25
.
2.
Senthilkumar
,
K.
,
Chandrasekar
,
M.
,
Alothman
,
O. Y.
,
Fouad
,
H.
,
Jawaid
,
M.
, &
Azeem
,
M. A.
(
2022
).
Flexural, impact and dynamic mechanical analysis of hybrid composites: Olive tree leaves powder/ pineapple leaf fibre/epoxy matrix
.
Journal of Materials Research and Technology
,
21
,
4241
4252
.
3.
Saffian
,
H. A.
,
Aizam
Talib
, M.,
Hua
Lee
, S.,
Tahir
,
P. M.
,
Hao
Lee
, C.,
Ariffin
,
H.
, &
Mohamed
Asa’ari
, A. Z. (
2020
).
Mechanical strength, thermal conductivity and electrical breakdown of kenaf core fiber/lignin/polypropylene biocomposite
.
Polymers
,
12
(
8
).
4.
V.
Pandiaraj
1.,
C.M.
Vivek
.,
R.
Thiyagarajan
.,
M.
Iyyappan
.,
M.
Bharath
.,
G.
Kaviyarasan
(
2023
).
Neural Network Approach on Influence of Ceramics on Dry Sliding Wear in Al-Cu-Zr Metal Matrix Composite
.
Materials science forum
,
1098
,
89
101
.
5.
Chikhi
,
M.
,
Agoudjil
,
B.
,
Boudenne
,
A.
, &
Gherabli
,
A.
(
2013
).
Experimental investigation of new biocomposite with low cost for thermal insulation
.
Energy and Buildings
,
66
,
267
273
.
6.
Balaji
,
N.
,
Kumar
,
J. V. S. P.
,
Ramesh
,
G.
,
Dhinakaran
,
V.
,
Gobu
,
N.
, &
Maridurai
,
T.
(
2022
).
Investigation on DMA, Fatigue and Creep Behaviour of Rice Husk Ash Biosilica-Prickly Pear Short Fibre-Reinforced Epoxy Resin Composite
.
Silicon
,
14
(
18
),
12773
12779
.
7.
Baghaei
,
B.
,
Skrifvars
,
M.
,
Salehi
,
M.
,
Bashir
,
T.
,
Rissanen
,
M.
, &
Nousiainen
,
P.
(
2014
).
Novel aligned hemp fibre reinforcement for structural biocomposites: Porosity, water absorption, mechanical performances and viscoelastic behaviour
.
Composites Part A: Applied Science and Manufacturing
,
61
,
1
12
.
8.
Jin
,
Z.
,
Mao
,
S.
,
Zheng
,
Y.
, &
Liang
,
K.
(
2023
).
Case Studies in Construction Materials Pre-treated corn straw fiber for fiber-reinforced concrete preparation with high resistance to chloride ions corrosion
.
Case Studies in Construction Materials
,
19
(
May
),
e02368
.
9.
Çelik
,
Y. H.
,
Çelik
,
K. S.
, &
Kilickap
,
E.
(
2021
).
Effects of natural hard shell particles on physical, chemical, mechanical and thermal properties of composites
.
Polymers and Polymer Composites
,
29
(
9_suppl
),
S667
S677
.
10.
Li
,
X.
,
Tabil
,
L. G.
,
Oguocha
,
I. N.
, &
Panigrahi
,
S.
(
2008
).
Thermal diffusivity, thermal conductivity, and specific heat of flax fiber-HDPE biocomposites at processing temperatures
.
Composites Science and Technology
,
68
(
7–8
),
1753
1758
.
11.
Guo
,
A.
,
Tao
,
X.
,
Kong
,
H.
,
Zhou
,
X.
,
Wang
,
H.
,
Li
,
J.
,
Li
,
F.
, &
Hu
,
Y.
(
2023
).
Effects of Aluminum Hydroxide on Mechanical, Water Resistance, and Thermal Properties of Starch-based Fiber-reinforced Composites with Foam Structures
.
Journal of Materials Research and Technology
,
23
,
1570
1583
.
12.
Bollino
,
F.
,
Giannella
,
V.
,
Armentani
,
E.
, &
Sepe
,
R.
(
2023
).
Mechanical behavior of chemically-treated hemp fibers reinforced composites subjected to moisture absorption
.
Journal of Materials Research and Technology
,
22
,
762
775
.
13.
Neopolean
,
P.
, &
Karuppasamy
,
K.
(
2022
).
Characterization of Silane Treated Opuntia Short Fibre and Bagasse Biosilica Toughened Epoxy Resin Composite
.
Silicon
,
14
(
15
),
9331
9340
.
14.
Ernest
,
E. M.
, &
Peter
,
A. C.
(
2022
).
Application of selected chemical modification agents on banana fibre for enhanced composite production
.
Cleaner Materials
,
5
(
April
),
100131
.
15.
Jayabalakrishnan
,
D.
,
Jayaseelan
,
V.
,
Patil
,
P. P.
,
Ramesh
,
B.
, &
Bhaskar
,
K.
(
2022
).
Mechanical, wear, and dielectric properties of opuntia cladode fiber and pearl millet biochar-reinforced epoxy composite
.
Biomass Conversion and Biorefinery
,
0123456789
.
16.
Chen
,
W.
,
Yu
,
H.
,
Liu
,
Y.
,
Hai
,
Y.
,
Zhang
,
M.
, &
Chen
,
P.
(
2011
).
Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process
.
Cellulose
,
18
(
2
),
433
442
.
17.
Väisänen
,
T.
,
Haapala
,
A.
,
Lappalainen
,
R.
, &
Tomppo
,
L.
(
2016
).
Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review
.
Waste Management
,
54
,
62
73
.
18.
Jaiganesh
,
V.
,
Manikandan
,
G.
,
Gurusamy
,
P.
, &
Kaliappan
,
S.
(
2022
).
Tensile fatigue, fracture toughness, and thermo-mechanical behavior of silane-modified Morinda citrifolia fiber and chitosan-reinforced epoxy composites
.
Biomass Conversion and Biorefinery
,
0123456789
,
1
8
.
19.
Sivaranjana
,
P.
, &
Arumugaprabu
,
V.
(
2021
).
A brief review on mechanical and thermal properties of banana fiber based hybrid composites
.
SN Applied Sciences
,
3
(
2
),
1
8
.
20.
Ben Samuel
,
J.
,
Julyes
Jaisingh
, S.,
Sivakumar
,
K.
,
Mayakannan
,
A. V.
, &
Arunprakash
,
V. R.
(
2021
).
Visco-Elastic,Thermal, Antimicrobial and Dielectric Behaviour of Areca Fibre-Reinforced Nano-silica and Neem Oil-Toughened Epoxy Resin Bio Composite
.
Silicon
,
13
(
6
),
1703
1712
.
21.
Arpitha
,
G. R.
,
Jain
,
N.
,
Verma
,
A.
, &
Madhusudhan
,
M.
(
2022
).
Corncob bio-waste and boron nitride particles reinforced epoxy-based composites for lightweight applications: fabrication and characterization
.
Biomass Conversion and Biorefinery
,
0123456789
,
1
8
.
22.
Zaafouri
,
K.
,
Ziadi
,
M.
,
Ben Hassen-Trabelsi
,
A.
,
Mekni
,
S.
,
Aïssi
,
B.
,
Alaya
,
M.
,
Bergaoui
,
L.
, &
Hamdi
,
M.
(
2017
).
Optimization of Hydrothermal and Diluted Acid Pretreatments of Tunisian Luffa cylindrica (L.) Fibers for 2G Bioethanol Production through the Cubic Central Composite Experimental Design CCD: Response Surface Methodology
.
BioMed Research International
,
2017
.
23.
Vairagade
,
V. S.
, &
Dhale
,
S. A.
(
2023
).
Impact resistance of hybrid steel fiber reinforced concrete
.
Hybrid Advances
,
3
(
January
),
100048
.
24.
Vivek
,
C. M.
,
Ahamed
,
J. S.
,
Babu
,
S. B. P.
,
Srivenkatesh
,
K.
,
Koglesh
,
M.
,
Batcha
,
S. A.
, &
Alameen
,
M.
(
2023
).
Experimental analysis of Briquetted cashew shell and tamarind seed as source of bio energy generation
. In
E3S Web of Conferences
(Vol.
405
, p.
02025
).
EDP Sciences.
This content is only available via PDF.
You do not currently have access to this content.