In the present work, the notion of soft ideal ℒ is applied in Čech soft closure space (ČSC-SP, briefly) (M, 𝛶, K) to generate a new ČSC-SP (M, 𝛶, K) finer than the given ČSC-SP (M, 𝛶, K) on the same M with a fixed set of parameters K. First, the concept of soft local function is introduced in ČSC-SP. Then, the basic properties of the soft local function in ČSC-SP are discussed to find a new Čech soft closure operator 𝛶* from the original one 𝛶. Finally, the compatibility of soft ideals with ČSC-SP is defined and some properties about this topic are given here.

1.
C.
Boonpok
and
J.
Khampakdee
, “
Between closed sets and generalized closed sets in closure spaces
,”
Acta Mathematica et Informatica Universitatis Ostraviensis
,
16
,
3
-
14
(
2008
).
2.
E.
Čech
, “Topological Spaces,”
Topological Papers of Eduard Čech
,
Academia, Prague
,
436
-
472
(
1968
).
3.
S. T.
Ekram
and
R. N.
Majeed
, “
Soft closure spaces
,”
IOP Conf. Series: Journal of Physics: Conference Series
,
1591
(
1
),
012076
(
2020
).
4.
R.
Gowri
and
G.
Jegadeesan
, “
On soft Čech closure spaces
,”
International Journal of Mathematics Trends and Technology
,
9
(
2
),
122
-
127
(
2014
).
5.
Kandil
,
O. A. E. Tantawy
,
S. A.
El-Sheikh
and
A. M.
Abd El-latif
, “
Soft ideal theory, Soft local function and generated soft topological spaces
,”
Appl. Math. Inf. Sci.
,
8
(
4
),
1595
-
1603
(
2014
).
6.
Kandil
,
O
.
A. E.
Tantawy
,
S.A.
El-Sheikh
and
A.M.
Abd El-latif
, “
Soft connectedness via soft ideals
,”
JNRS
(
4
),
90
-
108
(
2014
).
7.
J.
Khampaladee
, “
Semi open sets in closure spaces
,” Ph. D. thesis,
Bruno University, Bruno
,
10
-
21
(
2009
).
8.
F. H.
Khedr
,
O. R.
Sayed
and
Sh. R.
Mohamed
, “
On soft pre ideal open sets in soft ideal topological spaces
,”
Assiut Univ. J. of Mathematics and Computer Science
,
48
(
1
),
1
-
18
(
2019
).
9.
J.
Krishnaveni
and
C.
Sekar
, “
Čech Soft Closure Spaces
,”
International Journal of Mathematical Trends and Technology
,
6
(
2014
), pp.
123
-
135
.
10.
P. K.
Maji
,
R.
Biswas
and
A. R.
Roy
, “
Soft set theory
,”
Comput. Math. Appl.
,
45
,
555
-
562
(
2003
).
11.
H. I.
Mustafa
and
F. M.
Sleim
, “
Soft generalized closed sets with respect to an ideal in soft topological spaces
,”
Applied Mathematics & Information Sciences
,
8
(
2
),
665
671
(
2014
).
12.
D. A.
Molodtsov
, “
Soft set theory-first results
,”
Comput. Math. Appl.
,
37
,
19
-
31
(
1999
).
13.
N. A.
Nadhim
,
R. N.
Majeed
, and
H. J.
Ali
, “
Soft 𝒦(S𝒞)-spaces
,”
J. Interdiscip. Math
.,
22
(
8
),
1463
-
1470
(
2019
).
14.
N. A.
Nadhim
,
R. N.
Majeed
, and
H. J.
Ali
, “
Some new properties of soft 𝐿𝑐-spaces
,”
AIP Conference proceeding
,
2414
,
040013
(
2023
).
15.
D. N.
Roth
and
J. W.
Carlson
, “
Čech closure spaces
,”
Kyungpook Mathematical Journal
,
20
,
11
-
30
(
1980
).
16.
S.
Salen
, “
Some new properties on soft topological spaces
,”
Annals of Fuzzy Mathematics and Informatics
, Volume
17
, No.
3
,
303
-
312
(June
2019
).
17.
G.
Senel
, “
A Comparative Research on the Definition of Soft Point
,”
International Journal of Computer Applications
163
(
2
) (
2017
).
18.
M.
Shabir
and
M.
Naz
, “
On soft topological spaces
,”
Comput. Math. Appl.
,
61
,
1786
-
1799
(
2011
).
19.
T. A.
Sunitha
, “
A study on Čech closure spaces
,” Ph. D. thesis,
Cochin University of Science and Technology
,
Kerala
,
10
-
15
(
1994
).
20.
N.
Xie
, “
Soft points and the structure of soft topological spaces
,”
Annals of Fuzzy Mathematics and Informatics
,
10
(
2
),
309
-
322
(
2015
).
21.
Ambuj
Mohan
,
Saikat
Gochhait
,
Ahmed J.
Obaid
,
Muthmainnah
,
Miguel Cardoso
;
Application of big data analytics for health care – A study on COVID-19
.
A.I.P. Conf. Proc
. 27 September
2023
;
2736
(
1
):
060021
.
This content is only available via PDF.
You do not currently have access to this content.