Soft materials like rubber, foam, and honeycomb structures are pivotal in various industries, driving economic development. Rubber is essential in automotive tire manufacturing and engine component seals, while foam is used in construction for insulation and shock absorption, and honeycomb structures protect fragile items in packaging. Aerospace relies on these materials for lightweight and robust components, and sports gear and medical devices incorporate them for protection and support. Additionally, electronics benefit from their properties in vibration dampening and insulation. Determining the mechanical properties, such as stress-strain behavior, is crucial before using these materials, but the current standards, the Split-Hopkinson pressure bar (SHPB) and Universal testing machines, are expensive and not readily available. This paper introduces a novel methodology for characterizing soft materials, specifically addressing the intermediate strain rate range. The loading is generated by a drop weight, instrumented with accelerometer. The stress vs. strain behavior is derived from the drop weight’s acceleration profile. The approach avoids the use of strain gauges and can accommodate different specimen sizes, overcoming challenges of the SHPB. The methodology, demonstrated with a Polyurethane test specimen, aligns with evolving value chains, emphasizing efficiency, adaptability, and accuracy. This innovative approach not only addresses technological challenges in soft material testing but also has the potential to stimulate economic development, aligning well with Sustainable Development Goal 9.

1.
Z.
Li
, and
J.
Guan
, “
Hydrogels for Cardiac Tissue Engineering
,”
Polymers
3
(
2
),
740
761
(
2011
). DOI:
2.
C. J.
Bettinger
, “
Biodegradable Elastomers for Tissue Engineering and Cell-Biomaterial Interactions
,”
Macromolecular Bioscience
11
(
4
),
467
82
(
2011
). DOI:
3.
L. Davenport
Huyer
,
B.
Zhang
,
A.
Korolj
,
M.
Montgomery
,
S.
Drecun
,
G.
Conant
, … and
M.
Radisic
,. “
Highly Elastic and Moldable Polyester Biomaterial for Cardiac Tissue Engineering Applications
,”
ACS Biomaterials Science and Engineering
2
(
5
),
780
788
(
2016
). DOI: .
4.
R.
Herbert
,
J. H.
Kim
,
Y. S.
Kim
,
H. M.
Lee
, and
W. H.
Yeo
, “
Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces
,”
Materials
11
(
2
),
187
(
2018
). DOI: .
5.
Z.
Zhou
,
H.
Zhang
,
J.
Liu
and
W.
Huang
, “
Flexible Electronics from Intrinsically Soft Materials
,”
Giant
6
,
100051
(
2021
). DOI:
6.
H. R.
Lim
,
H. S.
Kim
,
R.
Qazi
,
Y. T.
Kwon
,
J. W.
Jeong
and
W. H.
Yeo
, “
Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment
,”
Advanced Materials
32
(
15
),
1901924
(
2020
). DOI: .
7.
C.
Wang
,
K.
Xia
,
Y.
Zhang
and
D. L.
Kaplan
, “
Silk-Based Advanced Materials for Soft Electronics
,”
Accounts of Chemical Research
52
(
10
),
2916
2927
(
2019
). DOI: .
8.
F.
Kawano
,
M.
Kon
,
A.
Koran
and
N.
Matsumoto
, “
Shock-Absorbing Behavior of Four Processed Soft Denture Liners
,”
The Journal of Prosthetic Dentistry
72
(
6
),
599
605
(
1994
). DOI: .
9.
K.
Zhang
,
P.
Chermprayong
,
D.
Tzoumanikas
,
W.
Li
,
M.
Grimm
,
M.
Smentoch
, … and
M.
Kovac
, “
Bioinspired Design of a Landing System with Soft Shock Absorbers for Autonomous Aerial Robots
,”
Journal of Field Robotics
36
(
1
),
230
251
(
2019
). DOI: .
10.
A.
Singh
,
V. D.
Shivling
,
P. K.
Khosla
,
A.
Saini
,
V.
Kumar
and
A.
Trigunayak
, “
Strain Hardening and Shock Mitigation Response of Polyurethane under High Strain Rates
,”
AIP Advances
11
(
11
), (
2021
). DOI: .
11.
J. S.
Wadali
and
P. K.
Khosla
, “
Healthcare 4.0 in Future Capacity Building for Pandemic Control
,”
Predictive and Preventive Measures for Covid-19 Pandemic
,
87
107
(
2021
). DOI: .
12.
Y.
Liu
,
J.
Meng
,
L.
Zhu
,
H.
Chen
,
Z.
Li
,
S.
Li
, … and
K.
Kosiba
, “
Dynamic Compressive Properties and Underlying Failure Mechanisms of Selective Laser Melted Ti-6Al-4V Alloy under High Temperature and Strain Rate Conditions
,”
Additive Manufacturing
54
, (
2022
). DOI: .
13.
H. W.
Höppel
,
J.
May
,
P.
Eisenlohr
, and
M.
Göken
, “
Strain-Rate Sensitivity of Ultrafine-Grained Materials
,”
International Journal of Materials Research
96
(
6
),
566
71
(
2005
). DOI: .
14.
T.
Rahmaan
,
C.
Butcher
,
K. J.
Daun
,
J.
Imbert
and
M. J.
Worswick
, “
High Strain Rate Constitutive and Fracture Characterization of AA7075-T6 Sheet under Various Stress States
,”
International Journal of Impact Engineering
183
,
104812
(
2024
). DOI: .
15.
Y.
Jiang
,
S.
Zhang
,
G.
Xue
and
W.
Wang
, “
Compressive Behavior of Rubberized Concrete under High Strain Rates
,”
Structures
56
,
104983
(
2023
). DOI: .
16.
P.
Gao
,
Z.
Ma
,
J.
Gu
,
S.
Ni
,
T.
Suo
,
Y.
Li
, … and
Liao
,
X.
. “
Exceptional High-Strain-Rate Tensile Mechanical Properties in a CrCoNi Medium-Entropy Alloy
,”
Science China Materials
65
(
3
),
811
19
(
2022
). DOI: .
17.
W.
Wang
,
Z.
Zhang
,
Q.
Huo
,
X.
Song
,
J.
Yang
,
X.
Wang
, … and
X.
Wang
, “
Dynamic Compressive Mechanical Properties of UR50 Ultra-Early-Strength Cement-Based Concrete Material under High Strain Rate on SHPB Test
,”
Materials
15
(
17
), (
2022
). DOI: .
18.
R.
Bardenheier
, and
G.
Rogers
.
“Dynamic Impact Testing with Servohydraulic Testing Machines.” Pp. 693–99
in
Journal De Physique. IV : JP
134
,
693
699
(
2006
). DOI: .
19.
A.
Kaur
,
N.
Mittal
,
P. K.
Khosla
and
M.
Mittal
,
“Machine Learning Tools to Predict the Impact of Quarantine,
"
Predictive and preventive measures for covid-19 pandemic
,
307
323
(
2021
). DOI: .
20.
S.
Diot
,
D.
Guines
,
A.
Gavrus
and
E.
Ragneau
, “
Two-Step Procedure for Identification of Metal Behavior from Dynamic Compression Tests
,”
International Journal of Impact Engineering
34
(
7
),
1163
84
(
2007
). DOI: .
21.
M. M.
LeBlano
and
D. H.
Lassila
, “
A Hybrid Technique for Compression Testing at Intermediate Strain Rates
,”
Experimental Techniques
20
(
5
),
21
24
(
1996
). DOI: .
22.
R.
Othman
,
P.
Guégan
,
G.
Challita
,
F.
Pasco
and
D.
LeBreton
, “
A Modified Servo-Hydraulic Machine for Testing at Intermediate Strain Rates
,”
International Journal of Impact Engineering
36
(
3
),
460
467
(
2009
). DOI: .
23.
M.
Fatt
, S. Ho. and
I.
Bekar
, “
High-Speed Testing and Material Modeling of Unfilled Styrene Butadiene Vulcanizates at Impact Rates
,”
Journal of Materials Science
39
(
23
),
6885
6899
(
2004
). DOI: .
24.
M. S. H.
Fatt
and
X.
Ouyang
, “
Three-Dimensional Constitutive Equations for Styrene Butadiene Rubber at High Strain Rates
,”
Mechanics of Materials
40
(
1–2
),
1
16
(
2008
). DOI: .
25.
C. M.
Roland
,
J. N.
Twigg
,
Y.
Vu
and
P. H.
Mott
, “
High Strain Rate Mechanical Behavior of Polyurea
,”
Polymer
48
(
2
),
574
578
(
2007
). DOI: .
26.
L. J.
Broutman
and
A.
Rotem
. “
Impact Strength and Toughness of Fiber Composite Materials
,”
ASTM Special Technical Publication,
114
133
(
1975
).
27.
I. M.
Daniel
,
J. L.
Abot
,
P. M.
Schubel
, and
J. J.
Luo
, “
Response and Damage Tolerance of Composite Sandwich Structures under Low Velocity Impact
,”
Experimental Mechanics
52
(
1
),
37
47
(
2012
). DOI: .
28.
B.
Song
,
B.
Sanborn
,
J.
Heister
,
R.
Everett
,
T.
Martinez
,
G.
Groves
, … and
M.
Spletzer
,. “
Development of ‘dropkinson’ Bar for Intermediate Strain-Rate Testing
.” in
EPJ Web of Conferences
183
,
02004
(
2018
). DOI: .
29.
A.
Singh
,
V. D.
Shivling
,
P. K.
Khosla
,
A.
Saini
,
V.
Kumar
, and
A.
Trigunayak
, “
Strain hardening and shock mitigation response of polyurethane under high strain rates
,”
AIP Adv.
,
2021
.
30.
Y.
Bai
,
C.
Liu
,
G.
Huang
,
W.
Li
and
S.
Feng
, “
A Hyper-Viscoelastic Constitutive Model for Polyurea under Uniaxial Compressive Loading
.”
Polymers
8
(
4
),
133
(
2016
) DOI: .
31.
C.
Li
, and
J.
Lua
, “
A Hyper-Viscoelastic Constitutive Model for Polyurea
,”
Materials Letters
63
(
11
),
877
880
(
2009
). DOI: .
32.
P. A. L. S.
Martins
,
R. M. Nata
Jorge
and
A. J. M.
Ferreira
, “
A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone-Rubber and Soft Tissues
,”
Strain
42
(
3
),
135
147
(
2006
). DOI: .
33.
M.
Sasso
,
G.
Palmieri
,
G.
Chiappini
and
D.
Amodio
, “
Characterization of Hyperelastic Rubber-like Materials by Biaxial and Uniaxial Stretching Tests Based on Optical Methods
,”
Polymer Testing
27
(
8
),
995
1004
(
2008
). DOI: .
34.
V.
Kanyanta
and
A.
Ivankovic
, “
Mechanical Characterisation of Polyurethane Elastomer for Biomedical Applications
,”
Journal of the Mechanical Behavior of Biomedical Materials
3
(
1
),
51
62
(
2010
). DOI: .
35.
Y.
Wang
,
W.
Luo
,
J.
Huang
,
C.
Peng
,
H.
Wang
,
C.
Yuan
, … and
L.
Dai
, “
Simplification of Hyperelastic Constitutive Model and Finite Element Analysis of Thermoplastic Polyurethane Elastomers
,”
Macromolecular Theory and Simulations
29
(
4
),
2000009
(
2020
). DOI: .
36.
H. M. C. C.
,
Somarathna
,
S. N.
Raman
,
D.
Mohotti
,
A. A.
Mutalib
, and
K. H.
Badri
, “
Hyper-Viscoelastic Constitutive Models for Predicting the Material Behavior of Polyurethane under Varying Strain Rates and Uniaxial Tensile Loading
,”
Construction and Building Materials
236
,
117417
(
2020
). DOI: .
37.
A. F.
Bower
, “
Constitutive Models: Relations between Stress and Strain
,”
Applied Mechanics of Solids
,
91
218
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.