This project aims to promote safe collaboration in shared office environments using compact and user-friendly robotic arms. Unlike traditional industrial robots, the robot is lighter, smaller, and can operate safely alongside people with minimal safety precautions. Its intuitive programming interfaces enable easy configuration, whether through graphical interfaces or physical assistance. The robotic arm can handle various tasks, from simple pick-and-place operations to complex assembly, welding, or quality control tasks. This paper describes a process for developing, putting into practice, and assessing a robotic arm system that is integrated with an Arduino UNO controller and a remote-control smartphone application. We first conduct a detailed analysis of robotic arm technology, covering its components, uses, and functions. Next, we use Autodesk for design, which allows us to visualize the gripper's functioning and the arm's range of motion in detail. The robotic arm, programmed in Embedded C, can be precisely controlled. Bluetooth connectivity improves user accessibility through a smartphone application. Extensive testing guarantees system resilience, and practical evaluations direct required improvements. By sensing and distributing the necessary medication, this arm control reduces human error in the delivery of medications in accordance with doctor's prescriptions. It is used in pharmacies. This approach offers a concise framework for future research in robotic arm technology.

1.
S.
Pawade
,
B.
Bhalerao
, and
P.
Pal
.
Robot Arm with Smartphone Control
.
Int. Res. J. Eng. Technol.
9
,
2926
2929
(
2022
).
2.
K.
Harish
,
D.
Megha
,
M.
Shuklambari
,
K.
Amit
, and
K. J.
Chaitanya
.
Pick and place robotic arm using Arduino
.
Int. J. Sci. Eng. Technol. Res. (IJSETR)
6
,
1568
1573
(
2017
).
3.
N. F. Nik
Mahmod
.
Smartphone-based robot control for localization
, Doctoral dissertation,
University Tun Hussein Onn Malaysia
(
2015
).
4.
R. V.
Aroca
,
A.
Péricles
,
B. S.
de Oliveira
,
L.
Marcos
, and
G.
Gonçalves
.
Towards smarter robots with smartphones
. in
5th Workshop in Applied Robotics and Automation. Robocontrol
, pp.
1
6
(
2012
).
5.
M.
Javaid
,
A.
Haleem
,
R. P.
Singh
,
S.
Rab
,
R.
Suman
, and
L.
Kumar
,
"Utilization of robotics for healthcare: A scoping review
.
J. Ind. Integration Manage.
2250015
(
2022
).
6.
M.
Sierotowicz
,
N.
Lotti
,
L.
Nell
,
F.
Missiroli
,
R.
Alicea
,
X.
Zhang
,
M.
Xiloyannis
,
R.
Rupp
,
E.
Papp
,
J.
Krzywinski
, and
C.
Castellini
.
EMG-driven machine learning control of a soft glove for grasping assistance and rehabilitation
.
IEEE Robot. Autom. Lett.
7
,
1566
1573
(
2022
).
7.
W. M. H. W.
Kadir
,
R. E.
Samin
, and
B. S. K.
Ibrahim
.
Internet controlled robotic arm
.
Proc. Eng.
41
,
1065
1071
(
2012
).
8.
C.
Tong
,
Advanced Materials for Printed Flexible Electronics
,
Springer
,
Bolingbrook, IL, USA
(
2022
).
9.
G. N.
Coelho
.
Autonomous Mobile Robot Navigation using Smartphones Extended Abstract.
(
2008
).
10.
A. M.
Al-Busaidi
.
Development of an educational environment for online control of a biped robot using MATLAB and Arduino
, in
2012 9th France-Japan & 7th Europe-Asia Congress on Mechatronics (MECATRONICS)/13th Int'l Workshop on Research and Education in Mechatronics (REM)
, pp.
337
344
(
2012
).
11.
S. K.
Sahoo
and
B. B.
Choudhury
.
Challenges and opportunities for enhanced patient care with mobile robots in healthcare
.
J. Mechatronics Artif. Intell. Eng.
4
,
83
103
(
2023
).
12.
R.
Malviya
and
P.
Goyal
,
Remote Patient Monitoring: A Computational Perspective in Healthcare
,
CRC Press
(
2023
).
13.
A.
Khang
.
Medical Robotics and AI-Assisted Diagnostics for a High-Tech Healthcare Industry
,
IGI Global
(
2024
).
14.
S.
Pawade
,
B.
Bhalerao
, and
P.
Pal
.
Robot Arm with Smartphone Control
.
Int. Res. J. Eng. Technol.
9
,
2926
2929
(
2022
).
This content is only available via PDF.
You do not currently have access to this content.