This article presents a new machine unlearning approach that utilizes multiple Generative Adversarial Network (GAN) based models. The proposed method comprises two phases: i) data reorganization in which synthetic data using the GAN model is introduced with inverted class labels of the forget datasets, and ii) fine-tuning the pre-trained model. The GAN models consist of two pairs of generators and discriminators. The generator discriminator pairs generate synthetic data for the retain and forget datasets. Then, a pre-trained model is utilized to get the class labels of the synthetic datasets. The class labels of synthetic and original forget datasets are inverted. Finally, all combined datasets are used to fine-tune the pre-trained model to get the unlearned model. We have performed the experiments on the CIFAR-10 dataset and tested the unlearned models using Membership Inference Attacks (MIA). The inverted class labels procedure and synthetically generated data help to acquire valuable information that enables the model to outperform state-of-the-art models and other standard unlearning classifiers.

1.
X.
Shen
,
H.
Brown
,
J.
Tao
,
M.
Strobel
,
Y.
Tong
,
A.
Narayan
,
H.
Soh
, and
F.
Doshi-Velez
, “
Towards regulatable ai systems: Technical gaps and policy opportunities
,”
arXiv preprint
arXiv:2306.12609 (
2023
).
2.
World economic forum. ai procurement in a box. technical report, world economic forum
,” https://www.weforum.org/reports/ai-procurement-in-a-box/ (
2020
), [Accessed 29-09-2023].
3.
Government of canada. directive on automated decision making. technical report, government of canada
,” https://www.tbs-sct.canada.ca/pol/doc-eng.aspx?id=32592 (
2019
), [Accessed 29-09-2023].
4.
Brazil center for the fourth industrial revolution. unpacking ai procurement in a box: Insights from implementation. technical report, world economic forum
,” https://www3.weforum.org/docs/WEF_Unpacking_AI_Procurement_in_a_Box_2022.pdf (
2022
), [Accessed 29-09-2023].
5.
General data protection regulation (gdpr
),” https://gdpr-info.eu/ (
2016
), [Accessed 29-09-2023].
6.
California consumer privacy act (ccpa
),” https://oag.ca.gov/privacy/ccpa (
2018
), [Accessed 29-09-2023].
7.
Consumer privacy protection act (cppa
),” https://ised-isde.canada.ca/site/innovation-better-canada/en/consumer-privacy-protection-act (
2022
), [Accessed 29-09-2023].
8.
H.
Xu
,
T.
Zhu
,
L.
Zhang
,
W.
Zhou
, and
P. S.
Yu
, “
Machine unlearning: A survey
,”
ACM Computing Surveys
56
,
1
36
(
2023
).
9.
Announcing the first machine unlearning challenge
,” https://blog.research.google/2023/06/announcing-first-machine-unlearning.html (
2023
), accessed: 30-09-2023.
10.
I.
Goodfellow
,
J.
Pouget-Abadie
,
M.
Mirza
,
B.
Xu
,
D.
Warde-Farley
,
S.
Ozair
,
A.
Courville
, and
Y.
Bengio
, “
Generative adversarial nets
,” in
Advances in neural information processing systems
(
2014
) pp.
2672
2680
.
11.
C. A.
Choquette-Choo
,
F.
Tramer
,
N.
Carlini
, and
N.
Papernot
, “Label-only membership inference attacks,” in
Proceedings of the 38th International Conference on Machine Learning
,
Proceedings of Machine Learning Research
, Vol. 139, edited by
M.
Meila
and
T.
Zhang
(PMLR,
2021
) pp.
1964
1974
.
12.
C.
Guo
,
T.
Goldstein
,
A.
Hannun
, and
L.
Van Der Maaten
, “
Certified data removal from machine learning models
,”
arXiv preprint
arXiv:1911.03030 (
2019
).
13.
S.
Krishna
,
J.
Ma
, and
H.
Lakkaraju
, “
Towards bridging the gaps between the right to explanation and the right to be forgotten
,”
arXiv preprint
arXiv:2302.04288 (
2023
).
14.
B.
Ghazi
,
P.
Kamath
,
R.
Kumar
,
P.
Manurangsi
,
A.
Sekhari
, and
C.
Zhang
, “Ticketed learning–unlearning schemes,” in
The Thirty Sixth Annual Conference on Learning Theory
(
PMLR
,
2023
) pp.
5110
5139
.
15.
Z.
Izzo
,
M. A.
Smart
,
K.
Chaudhuri
, and
J.
Zou
, “Approximate data deletion from machine learning models,” in
International Conference on Artificial Intelligence and Statistics
(
PMLR
,
2021
) pp.
2008
2016
.
16.
S.
Schelter
, ““
amnesia” – towards machine learning models that can forget user data very fast
,” in
1st International Workshop on Applied AI for Database Systems and Applications (AIDB19)
(
2019
).
17.
M.
Hou
,
B.
Chaib-Draa
,
C.
Li
, and
Q.
Zhao
, “
Generative adversarial positive-unlabelled learning
,”
arXiv preprint
arXiv:1711.08054 (
2017
).
18.
F.
Yang
,
E.
Dragut
, and
A.
Mukherjee
, “
Claim verification under positive unlabeled learning
,”
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)
(
2020
).
19.
A.
Al-Qerem
,
A. M.
Ali
,
H.
Attar
,
S.
Nashwan
,
L.
Qi
,
M. K.
Moghimi
, and
A.
Solyman
, “
Synthetic generation of multidimensional data to improve classification model validity
,”
ACM Journal of Data and Information Quality
15
,
1
20
(
2023
).
20.
S.
Azizi
,
S.
Kornblith
,
C.
Saharia
,
M.
Norouzi
, and
D. J.
Fleet
, “
Synthetic data from diffusion models improves imagenet classification
,”
arXiv preprint
arXiv:2304.08466 (
2023
).
21.
Starting kit for the neurips 2023 machine unlearning challenge
,” https://github.com/unlearning-challenge/starting-kit (
2023
), [Accessed 29-09-2023].
22.
A.
Krizhevsky
,
V.
Nair
, and
G.
Hinton
, “
Cifar-10 (canadian institute for advanced research
),” (
2009
).
23.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
, “
Deep residual learning for image recognition
,”
CoRR abs/1512.03385
(
2015
), arXiv:1512.03385.
24.
D. R.
Cox
, “
The regression analysis of binary sequences
,”
Journal of the Royal Statistical Society: Series B (Methodological)
20
,
215
232
(
1958
).
25.
C.
Cortes
and
V.
Vapnik
, “
Support-vector networks
,”
Machine learning
20
,
273
297
(
1995
).
26.
T.
Chen
and
C.
Guestrin
, “XGBoost: A scalable tree boosting system,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, KDD ’16 (ACM, New York, NY,
USA
,
2016
) pp.
785
794
.
27.
F.
Cano-Córdoba
,
S.
Sarma
, and
B.
Subirana
, “
Theory of intelligence with forgetting: Mathematical theorems explaining human universal forgetting using “forgetting neural networks
”,”
Tech. Rep. (Center for Brains, Minds and Machines (CBMM)
,
2017
).
28.
H.
Hu
,
Z.
Salcic
,
L.
Sun
,
G.
Dobbie
,
P. S.
Yu
, and
X.
Zhang
, “
Membership inference attacks on machine learning: A survey
,”
ACM Computing Surveys (CSUR)
54
,
1
37
(
2022
).
29.
C.
Dwork
,
F.
McSherry
,
K.
Nissim
, and
A.
Smith
, “Calibrating noise to sensitivity in private data analysis,” in
Theory of Cryptography: Third Theory of Cryptography Conference
, TCC 2006, New York, NY,
USA
, March 4-7, 2006. Proceedings 3 (
Springer
,
2006
) pp.
265
284
.
30.
N.
Xiang
,
X.
Zhang
,
Y.
Dou
,
X.
Xu
,
K.
Yang
, and
Y.
Tan
, “
High-end equipment data desensitization method based on improved stackelberg gan
,”
Expert systems with applications
180
,
114989
(
2021
).
31.
Z.
Wang
,
K.
Wei
,
C.
Jiang
,
J.
Tian
,
M.
Zhong
,
Y.
Liu
, and
Y.
Liu
, “Research on productization and development trend of data desensitization technology,” in
2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
(
IEEE
,
2021
) pp.
1564
1569
.
32.
P.-H.
Chen
,
W.
Wei
,
C.-J.
Hsieh
, and
B.
Dai
, “Overcoming catastrophic forgetting by bayesian generative regularization,” in
International Conference on Machine Learning
(
PMLR
,
2021
) pp.
1760
1770
.
33.
H.
Liu
,
Y.
Yang
, and
X.
Wang
, “
Overcoming catastrophic forgetting in graph neural networks
,” in
Proceedings of the AAAI conference on artificial intelligence
, Vol.
35
(
2021
) pp.
8653
8661
.
34.
A. K.
Tarun
,
V. S.
Chundawat
,
M.
Mandal
, and
M.
Kankanhalli
, “
Fast yet effective machine unlearning
,”
IEEE Transactions on Neural Networks and Learning Systems
(
2023
).
35.
M.
Alomari
,
F.
Li
,
D. C.
Hogg
, and
A. G.
Cohn
, “
Online perceptual learning and natural language acquisition for autonomous robots
,”
Artificial Intelligence
303
,
103637
(
2022
).
36.
E.
Wallace
,
J.
Tuyls
,
J.
Wang
,
S.
Subramanian
,
M.
Gardner
, and
S.
Singh
, “
AllenNLP Interpret: A framework for explaining predictions of NLP models
,” in
Empirical Methods in Natural Language Processing
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.