The problem of ensuring security and resilience in a cloud platform is of utmost importance and complexity due to the proliferation of several unique applications that rely on shared resources. It is imperative for the cloud infrastructure to incorporate a robust security analysis system capable of effectively detecting and mitigating potential hazards and malware threats. Machine learning-driven malware analysis has received much attention, but its computational complexity and detection precision are constrained. This study suggested a fresh malware detection system. We employed Independent Component Analysis (ICA) and Decision Tree (TD) data mining techniques to extract key features from the malware dataset at low dimensions’ rate. The experimental outcomes for input clusters for deep learning models using clustering methods then demonstrate improved classification accuracy and False Positive Rate (FPR).

1.
R.
Kumar
,
K.
Sethi
,
N.
Prajapati
,
R. R.
Rout
, and
P.
Bera
,
Machine Learning based Malware Detection in Cloud Environment using Clustering Approach
,
2020 11th Int. Conf. Comput. Commun. Netw. Technol. ICCCNT 2020
, (
2020
).
2.
Y. H.
Alagrash
,
H. S.
Mehdy
, and
R. H.
Mahdi
,
a Review of Intrusion Detection System Methods and Techniques: Past, Present and Future
,
Int. J. Tech. Phys. Probl. Eng.
,
15
,
1
,
11
17
, (
2023
).
3.
R.
Kumar
,
K.
Sethi
,
N.
Prajapati
,
R.R.
Rout
, and
P.
Bera
, in
2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT)
(IEEE,
2020
).
4.
J. C.
Kimmell
,
M.
Abdelsalam
, and
M.
Gupta
,
Analyzing Machine Learning Approaches for Online Malware Detection in Cloud
,
Proc. - 2021 IEEE Int. Conf. Smart Comput. SMARTCOMP 2021
,
189
196
, (
2021
).
5.
F.
Alghayadh
,
Y.
Alagrash
, and
D.
Debnath
,
“Privacy and trust in cloud computing
,
4,
4
,
504
509
, (
2018
).
6.
D.
Demirci
,
N.
Sahin
,
M.
Sirlancis
, and
C.
Acarturk
,
Static Malware Detection Using Stacked BiLSTM and GPT-2
,
IEEE Access
,
10
,
58488
58502
, (
2022
).
7.
C.
Li
,
Q.
Lv
,
N.
Li
,
Y.
Wang
,
D.
Sun
, and
Y.
Qiao
,
A novel deep framework for dynamic malware detection based on API sequence intrinsic features
,
Comput. Secur.
,
116
).
8.
H.
Manthena
,
J. C.
Kimmel
,
M.
Abdelsalam
, and
M.
Gupta
,
Analyzing and Explaining Black-Box Models for Online Malware Detection
,
IEEE Access
,
11
,
25237
25252
, (
2023
).
9.
M.
Prabhavathy
,
S. Uma
Maheswari
,
R.
Saveeth
,
S. Saranya
Rubini
, and
B.
Surendiran
,
A Novel Approach for Detecting Online Malware Detection LSTMRNN and GRU Based Recurrent Neural Network in Cloud Environment
,
Lect. Notes Networks Syst.
,
434
,
1
9
, (
2022
).
10.
Y.
Alagrash
,
H.
Badih
, and
J.
Rrushi
,
Malware Detection via Machine Learning and Recognition of Non Stationary Tasks
,
Proc. - IEEE 18th Int. Conf. Dependable, Auton. Secur. Comput. IEEE 18th Int. Conf. Pervasive Intell. Comput. IEEE 6th Int. Conf. Cloud Big Data Comput. IEEE 5th Cybe
,
606
611
, (
2020
).
11.
D.
Gupta
,
S.
Bhatt
,
M.
Gupta
, and
A.
Saman
,
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’ s public news and information
, (
2020
).
12.
M.
Wazid
,
A. K.
Das
,
J. J. P. C.
Rodrigues
,
S.
Shetty
, and
Y.
Park
,
IoMT Malware Detection Approaches: Analysis and Research Challenges
,
IEEE Access
,
7
,
182459
182476
, (
2019
).
13.
L.
Martignoni
,
R.
Paleari
, and
D.
Bruschi
,
A framework for behavior-based malware analysis in the cloud
,
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
, vol.
5905
LNCS,
178
192
, (
2009
).
14.
S.
Shaw
,
Pre-Publication Copy Pattern Based Malware Detection Technique in Cloud Architecture
, no. September 2016, (
2017
).
15.
O.
Aslan
and
R.
Samet
,
A Comprehensive Review on Malware Detection Approaches
,
IEEE Access
,
8
, pp.
6249
6271
, (
2020
).
16.
K.
Liu
,
S.
Xu
,
G.
Xu
,
M.
Zhang
,
D.
Sun
, and
H.
Liu
,
A Review of Android Malware Detection Approaches Based on Machine Learning
,
IEEE Access
,
8
,
124579
124607
, (
2020
).
17.
F.
De Gaspari
,
D.
Hitaj
,
G.
Pagnotta
,
L.
De Carli
, and
L. V.
Mancini
,
Evading behavioral classifiers: a comprehensive analysis on evading ransomware detection techniques
,
Neural Comput. Appl.
,
34
,
14
,
12077
12096
, (
2022
).
18.
S.
Mackenzie
,
Criminology Towards the Metaverse: Cryptocurrency Scams, Grey Economy and the Technosocial
,
Br. J. Criminol.
,
62
,
6
,
1537
1552
, (
2022
).
19.
A. S.
Shatnawi
,
Q.
Yassen
, and
A.
Yateem
,
An Android Malware Detection Approach Based on Static Feature Analysis Using Machine Learning Algorithms
,”
Procedia Comput. Sci.
,
201
,
653
658
, (
2022
).
20.
G.
Alberghini
,
S. Barbon
Junior
, and
A.
Cano
,
Adaptive ensemble of self-adjusting nearest neighbor subspaces for multi-label drifting data streams
,
Neurocomputing
,
481
,
228
248
, (
2022
).
21.
S.
Li
,
Q.
Zhou
,
R.
Zhou
, and
Q.
Lv
,
Intelligent malware detection based on graph convolutional network
,
J. Supercomput.
,
78
,
3
,
4182
4198
, (
2022
).
22.
J. A.
Dawson
,
J. T.
McDonald
,
L.
Hively
,
T. R.
Andel
,
M.
Yampolskiy
, and
C.
Hubbard
,
Phase space detection of virtual machine cyber events through hypervisor-level system call analysis
,”
Proc. - 2018 1st Int. Conf. Data Intell. Secur. ICDIS 2018
, no. April,
159
167
, (
2018
).
23.
M.
Abdelsalam
,
R.
Krishnan
, and
R.
Sandhu
,
Clustering-Based IaaS Cloud Monitoring
,
IEEE Int. Conf. Cloud Comput. CLOUD
,
2017,
672
679
, (
2017
).
24.
M.
Abdelsalam
,
R.
Krishnan
,
Y.
Huang
, and
R.
Sandhu
,
Malware Detection in Cloud Infrastructures Using Convolutional Neural Networks
,”
IEEE Int. Conf. Cloud Comput. CLOUD
,
2018
,
162
169
, (
2018
).
25.
Y.
Monakhova
,
D.
Rutledge
,
Y.
Monakhova
, and
D.
Rutledge
,
Independent components analysis (ICA) at the” cocktail-party” in analytical chemistry to cite this version: HAL Id: hal-02328547 Independent components analysis (ICA) at the ‘cocktail-party’ in analytical chemistry
, (
2019
).
This content is only available via PDF.
You do not currently have access to this content.