This paper presents a novel 3-wheeled synchro-autonomous drive system. This autonomous vehicle exhibits self-navigation capabilities, relying on a tripartite framework. It comprises good mobility, obstacle avoidance and computer vision. The drive can detect and avoid obstacles as well as can scan the objects through machine vision models. The upper mechanism is equipped with machine vision technology that identifies objects in its path and classifies them based on a predefined (Enemy/Friendly) category set. The model exhibits above 85% accuracy and works well in real time situations. Upon detecting an object within the Enemy set, the system activates an arrow shooting mechanism. In contrast, if the identified object does not fall into the Enemy category, the drive autonomously manoeuvres forward adeptly avoiding obstacles. The lower mechanism is facilitated by Ultrasonic sensors and IR proximity sensors for object detection and obstacle avoidance. Notably, the drive will continue to navigate forward until a new obstacle is identified. This paper outlines the intricate interplay of these components, showcasing a robust autonomous system capable of enemy detection and intelligent obstacle avoidance.

1.
J.
Hrabec
and
B.
Honzik
, “
Mobile Robots Playing Soccer
.”
2.
L.
Xuan
,
Z.
Minglu
, and
L.
Wei
, “
Methods to modular robot design
,” in
Proceedings - 2008 2nd International Symposium on Intelligent Information Technology Application, IITA 2008
,
2008
, pp.
663
668
. Doi: .
3.
M.
Jamzad
,
A. R.
Hadjkhodabakhshi
, and
V. S.
Mirrokni
, “
Object Detection and Localization Using Omnidirectional Vision in the RoboCup Environment
,”
2007
.
4.
A.
Agbeyangi
,
O.
Alashiri
,
J.
Odiete
, and
O.
Adenekan
, “
An Autonomous Obstacle Avoidance Robot Using Ultrasonic Sensor
,”
Journal of Computer Science and Its Application
, vol.
27
, no.
1
, Aug.
2020
.
5.
A.
Krizhevsky
,
I.
Sutskever
, and
G. E.
Hinton
, “
ImageNet Classification with Deep Convolutional Neural Networks
.” [Online]. Available: http://code.google.com/p/cuda-convnet/
6.
A. F.
Agarap
, “
Deep Learning using Rectified Linear Units (ReLU
),” Mar.
2018
, [Online]. Available: http://arxiv.org/abs/1803.08375
7.
K.
Simonyan
and
A.
Zisserman
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” Sep.
2014
, [Online]. Available: http://arxiv.org/abs/1409.1556
8.
A. G.
Howard
et al, “
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
,” Apr.
2017
, [Online]. Available: http://arxiv.org/abs/1704.04861
9.
C. M. J. M.
Dourado
et al, “
A new approach for mobile robot localization based on an online IoT system
,”
Future Generation Computer Systems
, vol.
100
, pp.
859
881
, Nov.
2019
, doi: .
10.
F.
Foroughi
,
J.
Wang
, and
Z.
Chen
, “Indoor robot localization in hand-drawn maps by using convolutional neural networks and Monte Carlo method,” in
ACM International Conference Proceeding Series
,
Association for Computing Machinery
, Jul.
2019
. doi: .
11.
S.
Lin
,
J.
Wang
,
M.
Xu
,
H.
Zhao
, and
Z.
Chen
, “
Topology Aware Object-Level Semantic Mapping towards More Robust Loop Closure
,”
IEEE Robot Autom Lett
, vol.
6
, no.
4
, pp.
7041
7048
, Oct.
2021
, doi: .
12.
D.
Fox
,
W. Olfram
Burgard
, and
S. Thrun
Yz
, “
Controlling Synchro-drive Robots with the Dynamic Window Approach to Collision Avoidance
.”
13.
M. O.
Tătar
,
F.
Haiduc
, and
D.
Mândru
, “
Design of a synchro-drive omnidirectional mini-robot
,”
Solid State Phenomena
, vol.
220–221
, pp.
161
167
,
2015
, doi: .
14.
T. M.
Olimpiu
,
C.
Claudiu
,
M.
Dan
, and
C.
Beniamin
, “
Synchronous drive omnidirectional minirobot
,” in
Applied Mechanics and Materials
,
2012
, pp.
294
301
. doi: .
15.
F.
Foroughi
,
Z.
Chen
, and
J.
Wang
, “
A CNN-based system for mobile robot navigation in indoor environments via visual localization with a small dataset
,”
World Electric Vehicle Journal
, vol.
12
, no.
3
,
2021
, doi: .
16.
K.
O’Shea
and
R.
Nash
, “
An Introduction to Convolutional Neural Networks
,” Nov.
2015
, [Online]. Available: http://arxiv.org/abs/1511.08458
17.
S.
Ren
,
K.
He
,
R.
Girshick
, and
J.
Sun
, “
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
.” [Online]. Available: https://github.com/
18.
R.
Girshick
,
J.
Donahue
,
T.
Darrell
, and
J.
Malik
, “
Rich feature hierarchies for accurate object detection and semantic segmentation
.” [Online]. Available: http://arxiv.
19.
B.
Cheng
,
Y.
Wei
,
H.
Shi
,
R.
Feris
,
J.
Xiong
, and
T.
Huang
, “
Revisiting RCNN: On Awakening the Classification Power of Faster RCNN
.”
20.
T.
Dean
,
M. A.
Ruzon
,
M.
Segal
,
J.
Shlens
,
S.
Vijayanarasimhan
, and
J.
Yagnik
, “
Fast, accurate detection of 100,000 object classes on a single machine
,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
2013
, pp.
1814
1821
. doi: .
21.
F.
Pérez-Hernández
,
S.
Tabik
,
A.
Lamas
,
R.
Olmos
,
H.
Fujita
, and
F.
Herrera
, “
Object Detection Binary Classifiers methodology based on deep learning to identify small objects handled similarly: Application in video surveillance
,”
Knowl Based Syst
, vol.
194
, Apr.
2020
, doi: .
22.
G.
Zhaoxin
,
L.
Han
,
Z.
Zhijiang
, and
P.
Libo
, “Design a Robot System for Tomato Picking Based on YOLO v5,” in
IFAC-PapersOnLine
,
Elsevier B.V
.,
2022
, pp.
166
171
. doi: .
23.
C. P.
Papageorgiou
,
M.
Oren
, and
T.
Poggio
, “
A General Framework for Object Detection
.”
24.
R.
Padilla
,
S. L.
Netto
,
E. A. B.
Da Silva
, and
S. L.
Netto
, “
A Survey on Performance Metrics for Object-Detection Algorithms
”, doi: .
25.
S.
Srivastava
,
A. V.
Divekar
,
C.
Anilkumar
,
I.
Naik
,
V.
Kulkarni
, and
V.
Pattabiraman
, “
Comparative analysis of deep learning image detection algorithms
,”
J Big Data
, vol.
8
, no.
1
, Dec.
2021
, doi: .
26.
A.
John
and
D.
Meva
, “
A Comparative Study of Various Object Detection Algorithms and Performance Analysis Multimodal biometric authentication View project A Comparative Study of Various Object Detection Algorithms and Performance Analysis
,”
International Journal of Computer Sciences and Engineering Open Access Research Paper
, vol.
8
, no.
10
,
2020
, doi: .
27.
Z. Q.
Zhao
,
P.
Zheng
,
S. T.
Xu
, and
X.
Wu
, “
Object Detection with Deep Learning: A Review
,”
IEEE Transactions on Neural Networks and Learning Systems
, vol.
30
, no.
11
. Institute of Electrical and Electronics Engineers Inc., pp.
3212
3232
, Nov. 01,
2019
. doi: .
28.
Z.
Zou
,
K.
Chen
,
Z.
Shi
,
Y.
Guo
, and
J.
Ye
, “
Object Detection in 20 Years: A Survey
,” May
2019
, [Online]. Available: http://arxiv.org/abs/1905.05055
29.
Y.
Shi
,
N.
Wang
, and
X.
Guo
, “
YOLOV: Making Still Image Object Detectors Great at Video Object Detection
,”
2023
. [Online]. Available: https://github.com/YuHengsss/YOLOV.
30.
T.
Diwan
,
G.
Anirudh
, and
J. V.
Tembhurne
, “
Object detection using YOLO: challenges, architectural successors, datasets and applications
,”
Multimed Tools Appl
, vol.
82
, no.
6
, pp.
9243
9275
, Mar.
2023
, doi: .
31.
J.
Glenn
, N. K, M. T, and V. R, “
yolov5
.”
Code Repository
,
2020
.
32.
E.
Martinez-Martin
and
A. P.
Del Pobil
, “
Object detection and recognition for assistive robots: Experimentation and implementation
,”
IEEE Robot Autom Mag
, vol.
24
, no.
3
, pp.
123
138
, Sep.
2017
, doi: .
33.
T.-Y.
Lin
et al, “
Microsoft COCO: Common Objects in Context
,” May
2014
, [Online]. Available: http://arxiv.org/abs/1405.0312
34.
D. H.
Dos Reis
,
D.
Welfer
,
M. A.
De Souza Leite Cuadros
, and
D. F. T.
Gamarra
, “
Mobile Robot Navigation Using an Object Recognition Software with RGBD Images and the YOLO Algorithm
,”
Applied Artificial Intelligence
, vol.
33
, no.
14
, pp.
1290
1305
, Dec.
2019
, doi: .
35.
Y.-H.
Lee
and
Y.
Kim
, “
Comparison of CNN and YOLO for Object Detection
,”
Journal of the Semiconductor & Display Technology
, vol.
19
, no.
1
,
2020
.
This content is only available via PDF.
You do not currently have access to this content.