Cassava peels and cassava pulp are solid waste of the tapioca industry, that can be made into maltodextrin. Indonesia is the second largest tapioca producer in Asia after Thailand. From this activity it produces 22% of Cassava peels and pulp. The largest components of waste are starch 65,5%, cellulose 8,1%, hemicellulose and lignin respectively 2,8% and 2,2%, ash content 5,7% and 3,1% dry weight of protein. Cassava peel provides inexpensive non-food biomass waste which can be hydrolysed into simple sugars such as maltodextrin as a useful feedstock. Consumption of maltodextrin in Indonesia can only met by 30% or about 72.000 tons/year produced in Lampung and 70% fulfilled from imports. The research objectives are to know the characteristic of maltodextrin made by hydrolysis of cassava peel. The method of maltodextrin was performed by hydrolysis procedure and mechanical disruption procedure (homogenization and ultrasonication). The results were compared with a common acid hydrolysis. The resulting maltodextrin from both procedures were then analysed using Dextrose Equivalent, FTIR, and NMR. The results show that maltodextrin was successfully prepared from both procedures. The physical properties of the product were different; however, they had similar chemical properties.

1.
M. S. N. M.
Sutikno
, “
PENGARUH KONSENTRASI ENZIM SELULASE, α–AMILASE DAN GLUKOAMILASE TERHADAP KADAR GULA REDUKSI DARI ONGGOK
,”
Jurnal Teknologi Industri & Hasil Pertanian,
vol.
21
, no.
1
, pp.
1
12
,
2016
.
2.
M. C. D. P. I. S.
Purwaningsih
A. S.
Handayani
, “Cutting Technique Chain Structure of Amylopectin as Macro-initiator for Biodegradable Copolymers by ATRP,” in
HPI-FAPS International Conference on Innovation in Polymer Science and Technology 2013 (IPST2013)
,
Jogyakarta
,
2013
.
3.
A. S. H. E. B. Mochamad
Chalid
, “
Functionalization of starch for macro-initiator of atomic transfer radical polymerization (ATRP
),”
Advanced Materials Research,
vol.
1051
, pp.
90
94
,
2014
.
4.
M. C. E. B. D. P.
Aniek
S
Handayani
, “
Grafting of amylopectin with various alkyl methacrylate by atom transfer radical polymerization for engineering application
,”
Macromolecular Symposia,
vol.
371
, no.
1
, pp.
58
60
,
2017
.
5.
A. H. IS
Purwaningsih
, “
Utilization of amylopectin-grafted-poly(hexyl methacrylate) as bio-compatible agent for polypropylene/starch polymers blend
,”
OP Conference Series: Materials Science and Engineering,
vol.
223
, no.
1
, pp.
1
9
,
2017
.
6.
Soeprijanto
,
S.
,
Qomariyah
,
L.
,
Hamzah
,
A.
, &
Altway
,
S.
(
2022
).
Bioconversion of Industrial Cassava Solid Waste (Onggok) to Bioethanol Using a Saccharification and Fermentation process
.
International Journal of Renewable Energy Development
,
11
(
2
),
357
363
.
7.
Rojas
,
M. J.
,
Amaral-Fonseca
,
M.
,
Fernandez-Lafuente
,
R.
,
de Lima Camargo Giordano
,
R.
, &
Tardioli
,
P. W.
(
2019
).
Recovery of starch from cassava bagasse for cyclodextrin production by sequential treatment with α-amylase and cyclodextrin glycosyltransferase
.
Biocatalysis and Agricultural Biotechnology
,
22
(November).
8.
EEC
. (
1979
).
Determination of Reducing Sugars Expressed as Invert Sugar of DextroseEquivalent. First Commission Directive 79/786/EEC
.
Official Journal of the European Communities
,
41
(
239
),
41
50
.
9.
Chemat
,
F.
,
Zill-E-Huma
, &
Khan
,
M. K.
(
2011
).
Applications of ultrasound in food technology: Processing, preservation and extraction
.
Ultrasonics Sonochemistry
,
18
(
4
),
813
835
.
10.
González-Lemus
,
L. B.
,
Calderón-Domínguez
,
G.
,
de la Paz Salgado-Cruz
,
M.
,
Díaz-Ramírez
,
M.
,
Ramírez-Miranda
,
M.
,
Chanona-Pérez
,
J. J.
,
Gϋemes-Vera
,
N.
, &
Farrera-Rebollo
,
R. R.
(
2018
).
Ultrasound-assisted extraction of starch from frozen jicama (P. erosus) roots: Effect on yield, structural characteristics and thermal properties
.
CYTA - Journal of Food
,
16
(
1
),
738
746
.
11.
Aparicio
,
C.
,
Resa
,
P.
,
Elvira
,
L.
,
Molina-García
,
A. D.
,
Martino
,
M.
, &
Sanz
,
P. D.
(
2009
).
Assessment of starch gelatinization by ultrasonic and calorimetric techniques
.
Journal of Food Engineering
,
94
(
3–4
),
295
299
.
12.
Sindhu
,
R.
,
Shiburaj
,
S.
,
Sabu
,
A.
,
Fernandes
,
P.
,
Singhal
,
R.
,
Mathew
,
G. M.
,
Nair
,
I. C.
,
Jayachandran
,
K.
,
Vidya
,
J.
,
de Souza Vandenberghe
,
L. P.
,
Deniz
,
I.
,
Madhavan
,
A.
,
Binod
,
P.
,
Sukumaran
,
R. K.
,
Kumar
,
S. S.
,
Anusree
,
M.
,
Nagavekar
,
N.
,
Soumya
,
M.
,
Jayakumar
,
A.
, …
Pandeyl
,
A.
(
2020
).
Enzyme Technology in Food Processing: Recent Developments and Future Prospects
.
Innovative Food Processing Technologies: A Comprehensive Review
,
3
,
191
215
.
13.
Matwijczuk
,
A.
,
Budziak-Wieczorek
,
I.
,
Czernel
,
G.
,
Karcz
,
D.
,
Barańska
,
A.
,
Jedlińska
,
A.
, &
Samborska
,
K.
(
2022
).
Classification of Honey Powder Composition by FTIR Spectroscopy Coupled with Chemometric Analysis
.
Molecules
,
27
(
12
),
1
14
.
14.
Gurturk
,
Z.
,
Tezcaner
,
A.
,
Dalgic
,
A. D.
,
Korkmaz
,
S.
, &
Keskin
,
D.
(
2017
).
Maltodextrin modified liposomes for drug delivery through the blood-brain barrier
.
MedChemComm
,
8
(
6
),
1337
1345
.
15.
Wu
,
D. D.
,
Tan
,
Y.
,
Cao
,
Z. W.
,
Han
,
L. J.
,
Zhang
,
H. L.
, &
Dong
,
L. S.
(
2018
).
Preparation and characterization of maltodextrin-based polyurethane
.
Carbohydrate Polymers
,
194
,
236
244
.
16.
Rayhani
,
Z.
,
Kurniasih
,
E.
,
Savia
, &
Fadhilah
,
R.
(
2018
).
Classification of dextrose equivalent analysis maltodextrin starch seeds through enzymatic hydrolysis reaction
.
IOP Conference Series: Materials Science and Engineering
,
420
(
1
).
17.
Montañez Soto
,
J. L.
(
2012
).
Influence of starch source in the required hydrolysis time for the production of maltodextrins with different dextrose equivalent
.
African Journal of Biotechnology
,
11
(
69
).
This content is only available via PDF.
You do not currently have access to this content.