On the ice tube distribution route at PT Es Hupindo Yogyakarta, problems often arise, which are complained about by the company’s regular customers, namely delays in delivery and poor ice quality. This is because the company’s route has long distances, and the roads are passed by the fleet, which is prone to congestion, so the travel time becomes very long. This research aims to find the optimal route that minimizes the distance traveled and travel time in shipping ice tubes per day on one of the routes using the Multi Objective Traveling Salesman problem approach (MOTSP). The problem is modeled using an integer programming formulation and finding solutions using the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) metaheuristic method. NSGA-II results in two Pareto optimal routes. The company’s manager chose the best route among the two Pareto optimal routes based on the manager’s preference for the value of the objective function total distance traveled and the value of the objective function total travel time. The selected route can save a mileage 225,005 km away and a travel time for 25156 seconds compared to the existing route currently used by the company.

1.
F.B.
Silaban
,
H.
Suliantoro
, and
A.
Susanty
, “
Perancangan Rute Distribusi Beras Sejahtera Menggunakan Algoritma Ant Colony Optimization (Studi Kasus di BULOG Kabupaten Semarang
,”
Ind. Eng. Online J.
5
(
1
), (
2016
).
2.
S.
Raff
, “
Routing and scheduling of vehicles and crews: The state of the art
,”
Comput. Oper. Res.
10
(
2
),
63
211
(
1983
).
3.
A.
Yulmasari
, “
Minimasi Biaya Distribusi Dengan Menggunakan Metode Traveling Salesman Problem (TSP
),”
Pros. Semnastek
, (
2017
).
4.
Rini
,
S.
Susanty
, and
Y.
Nurdiansyah
, “
USULAN PERBAIKAN RUTE PENDISTRIBUSIAN ICE TUBE MENGGUNAKAN METODE NEAREST NEIGHBOUR DAN GENETIC ALGORITHM
,”
REKA Integr.
3
(
4
), (
2015
).
5.
A.M.
Rizki
,
W.F.
Mahmudy
, and
G.E.
Yuliastuti
, “
Optimasi Multi Travelling Salesman Problem (M-Tsp) Untuk Distribusi Produk Pada Home Industri Tekstil Dengan Algoritma Genetika
,”
Klik-Kumpul. J. Ilmu Komput
4
(
2
),
125
(
2017
).
6.
S.
Gupta
, and
P.
Panwar
, “
Solving travelling salesman problem using genetic algorithm
,”
Int. J. Adv. Res. Comput. Sci. Softw. Eng.
3
(
6
),
376
380
(
2013
).
7.
T.
George
, and
T.
Amudha
, in
Adv. Comput. Intell. Syst. Proc. ICACM 2019
(
Springer
,
2020
), pp.
141
151
.
8.
I.-D.
Psychas
,
E.
Delimpasi
, and
Y.
Marinakis
, “
Hybrid evolutionary algorithms for the multiobjective traveling salesman problem
,”
Expert Syst. Appl.
42
(
22
),
8956
8970
(
2015
).
9.
X.
Chen
,
Y.
Liu
,
X.
Li
,
Z.
Wang
,
S.
Wang
, and
C.
Gao
, “
A new evolutionary multiobjective model for traveling salesman problem
,”
Ieee Access
7
,
66964
66979
(
2019
).
10.
F.M.
Puspita
,
A.
Meitrilova
, and
S.
Yahdin
, in
J. Phys. Conf. Ser.
(
IOP Publishing
,
2020
), p.
12029
.
11.
K.
Sharma
, and
M.K.
Trivedi
, in
Artif. Intell. Sustain. Comput. Proc. ICSISCET 2020
(
Springer
,
2022
), pp.
45
63
.
12.
S.
Otri
, “
Improving the bees algorithm for complex optimisation problems
,” (
2011
).
13.
R.
Wilfahrt
,
S.
Kim
,
S.
Shekhar
,
H.
Xiong
, and
X.
Zhou
, “
Traveling Salesman Problem (TSP
).,” (
2008
).
14.
N.S.W.
Gotami
,
Y.M.
Febrianti
,
R.
Dini
,
H.F.
Aziz
, and
V.N.
Wijayaningrum
, “
Penentuan Rute Pengiriman Ice Tube di Kota Malang dengan Algoritma Genetika
,”
J. Buana Inform.
11
(
1
),
10
16
(
2020
).
15.
Rahimi
,
A.H.
Gandomi
,
K.
Deb
,
F.
Chen
, and
M.R.
Nikoo
, “
Scheduling by NSGA-II: Review and bibliometric analysis
,”
Processes
10
(
1
),
98
(
2022
).
16.
N.
Qamar
,
N.
Akhtar
, and
I.
Younas
, “
Comparative analysis of evolutionary algorithms for multi-objective travelling salesman problem
,”
Int. J. Adv. Comput. Sci. Appl.
9
(
2
),
371
379
(
2018
).
17.
I.A.
Hameed
, in
Int. Conf. Adv. Mach. Learn. Technol. Appl. 4
(
Springer
,
2020
), pp.
121
132
.
18.
E. Ghadiri
Sufi
,
S.
Soltani-Mohammadi
, and
H.
Mokhtari
, “
Optimizing the exploratory drilling rig route based on the multi-objective multiple traveling salesman problem
,”
Int. J. Min. Geo-Engineering
56
(
4
),
331
337
(
2022
).
19.
K.
Michalak
, “
Evolutionary algorithm using random immigrants for the multiobjective travelling salesman problem
,”
Procedia Comput. Sci.
192
,
1461
1470
(
2021
).
20.
S.
Benhida
, and
A.
Mir
, “
Generating subtour elimination constraints for the Traveling Salesman Problem
,”
IOSR J. Eng.
8
(
7
),
17
21
(
2018
).
21.
U.
Heidelberg
.
Discrete and Combinatorial Optimization
[WWW Document]. URL http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/atsp/, (
2023
).
22.
D.-C.
Dang
,
A.
Opris
,
B.
Salehi
, and
D.
Sudholt
, “
Analysing the Robustness of NSGA-II under Noise
,”
ArXiv Prepr.
ArXiv2306.04525, (
2023
).
23.
K.
Shang
,
H.
Ishibuchi
,
W.
Chen
,
Y.
Nan
, and
W.
Liao
, “
Hypervolume-optimal μ-distributions on line/plane-based Pareto fronts in three dimensions
,”
IEEE Trans. Evol. Comput.
26
(
2
),
349
363
(
2021
).
24.
M.F.
Rego
,
J.C.E.M.
Pinto
,
L.P.
Cota
, and
M.J.F.
Souza
, “
A mathematical formulation and an NSGA-II algorithm for minimizing the makespan and energy cost under time-of-use electricity price in an unrelated parallel machine scheduling
,”
PeerJ Comput. Sci.
8
,
e844
(
2022
).
This content is only available via PDF.
You do not currently have access to this content.