High temperature oxidation was the main cause of damage or leaks in the boiler tube. Prevention of oxidation using High Velocity Oxygen Fuel (HVOF) thermal spray coating with Cr3C2-NiCr powder had been scientifically proven. However, technological developments made Cr3C2−NiCr coatings still require proper optimization. Mixing NiCrAlY with Cr3C2−NiCr was a new idea but it was rarely investigated. In this work, Cr3C2-NiCr was mixed with NiCrAlY by varying 2 different compositions (60:20:20 and 40:30:30 for Cr3C2-NiCr: NiCr: NiCrAlY) and 2 different powder size of Cr3C2−NiCr (< 37 µm and 45 µm). Optical microscopes displayed a dense layer morphology in the use of small powders. Meanwhile, the increasing of NiCrAlY decreased the hardness of coating. The thermal cycle caused weight gains due to the formation of oxides, which were detected by X-ray Diffraction (XRD) and supported by Energy Dispersive X-Ray Spectroscopy (EDS).

1.
Yoo
,
K.-B.
,
Y.
He
,
H.-S.
Lee
,
S.-Y.
Bae
,
D.-S.
Kim
, and
K.
Shin
,
Study of the scale formed on super 304H boiler tube steels after long-term steam oxidation at high temperatures.
Materials Characterization
,
2018
.
146
: p.
71
80
.
2.
Pramanick
,
A.
,
G.
Das
,
S.K.
Das
, and
M.
Ghosh
,
Failure investigation of super heater tubes of coal fired power plant.
Case Studies in Engineering Failure Analysis
,
2017
.
9
: p.
17
26
.
3.
Janicki
,
D.
,
Laser cladding of Inconel 625-based composite coatings reinforced by porous chromium carbide particles
.
Optics & Laser Technology
,
2017
.
94
: p.
6
14
.
4.
Mohammed
,
A.A.
,
Z.T.
Khodair
, and
A.A.
Khadom
,
Preparation, characterization and application of Al2O3 nanoparticles for the protection of boiler steel tubes from high temperature corrosion
.
Ceramics International
,
2020
.
46
(
17
): p.
26945
26955
.
5.
Qiu
,
L.
,
X.
Zhu
, and
K.
Xu
,
Internal stress on adhesion of hard coatings synthesized by multi-arc ion plating.
Surface and Coatings Technology
,
2017
.
332
: p.
267
274
.
6.
Goyal
,
R.
,
B.S.
Sidhu
, and
V.
Chawla
,
Characterization of plasma-sprayed carbon nanotube (CNT)-reinforced alumina coatings on ASME-SA213-T11 boiler tube steel.
The International Journal of Advanced Manufacturing Technology
,
2017
.
92
(
9
): p.
3225
3235
.
7.
Chadha
,
S.
,
R.
Jefferson-Loveday
, and
T.
Hussain
,
Effect of nozzle geometry on the gas dynamics and evaporation rates of Suspension High Velocity Oxy Fuel (SHVOF) thermal spray: A numerical investigation
.
Surface and Coatings Technology
,
2019
.
371
: p.
78
89
.
8.
Sidhu
,
T.
,
S.
Prakash
, and
R.
Agrawal
,
Hot corrosion studies of HVOF NiCrBSi and Stellite-6 coatings on a Ni-based superalloy in an actual industrial environment of a coal fired boiler
.
Surface and Coatings Technology
,
2006
.
201
(
3-4
): p.
1602
1612
.
9.
Zhang
,
X.
,
F.
Li
,
Y.
Li
,
Q.
Lu
,
Z.
Li
,
H.
Lu
,
X.
Ran
, and
X.
Qi
,
Comparison on multi-angle erosion behavior and mechanism of Cr3C2-NiCr coatings sprayed by SPS and HVOF.
Surface and Coatings Technology
,
2020
.
403
: p.
126366
.
10.
Yang
,
X.
,
J.
Zhang
, and
G.
Li
,
Cavitation erosion behaviour and mechanism of HVOF-sprayed NiCrBSi– (Cr3C2–NiCr) composite coatings
.
Surface Engineering
,
2018
.
34
(
3
): p.
211
219
.
11.
Zhou
,
W.
,
K.
Zhou
,
C.
Deng
,
K.
Zeng
, and
Y.
Li
,
Hot corrosion behaviour of HVOF-sprayed Cr3C2-NiCrMoNbAl coating.
Surface and Coatings Technology
,
2017
.
309
: p.
849
859
.
12.
Ghadami
,
F.
and
A.S.R.
Aghdam
,
Preparation of NiCrAlY/nano-CeO2 powder with the core-shell structure using high-velocity oxy-fuel spraying process
.
Materials Chemistry and Physics
,
2020
.
243
: p.
122551
.
13.
Abu-warda
,
N.
,
L.
Tomás
,
A.
López
, and
M.
Utrilla
,
High temperature corrosion behavior of Ni and Co base HVOF coatings exposed to NaCl-KCl salt mixture.
Surface and Coatings Technology
,
2021
: p.
127277
.
14.
Martides
,
E.
,
B.
Prawara
,
H.
Ardy
,
E.
Junianto
, and
B.
Priyono
. The Influence of Particles Size and Composition Variation of NiCr-CrC (20NiCr) Metal Matrix Composites Coatings Properties on Boiler Tubes Application. in
Materials Science Forum.
2017
.
Trans Tech Publ
.
15.
Tillmann
,
W.
,
D.
Stangier
,
L.
Hagen
,
P.
Schröder
, and
M.
Krabiell
,
Influence of the WC grain size on the properties of PVD/HVOF duplex coatings.
Surface and Coatings Technology
,
2017
.
328
: p.
326
334
.
16.
Verma
,
R.
and
G.
Kaushal
,
Comparative high temperature oxidation studies of HVOF IN 625 coating on T22 boiler steel at 900° C and 700° C. Materials Today: Proceedings
,
2020
.
17.
Jegadeeswaran
,
N.
,
M.
Ramesh
, and
K.U.
Bhat
,
Combating corrosion degradation of turbine materials using HVOF sprayed 25%(Cr3C2-25 (Ni20Cr))+ NiCrAlY coating
.
International Journal of Corrosion
,
2013
.
2013
.
18.
Davis
,
J.R.
,
Handbook of thermal spray technology
.
2004
:
ASM international
.
19.
Hanson
,
T.
and
G.
Settles
,
Particle temperature and velocity effects on the porosity and oxidation of an HVOF corrosion-control coating
.
Journal of thermal spray technology
,
2003
.
12
(
3
): p.
403
415
.
20.
Azizpour
,
M.J.
and
M.
Tolouei-Rad
,
The effect of spraying temperature on the corrosion and wear behavior of HVOF thermal sprayed WC-Co coatings
.
Ceramics International
,
2019
.
45
(
11
): p.
13934
13941
.
21.
Takahashi
,
R.J.
,
J.
Assis
,
F.P.
Neto
,
A.
Mello
, and
D.A.P.
Reis
. Sintering study of NiCrAlY. in
Materials Science Forum.
2017
.
Trans Tech Publ
.
22.
Hanyaloglu
,
S.
,
B.
Aksakal
, and
I.
McColm
,
Reactive sintering of electroless nickel-plated aluminum powders.
Materials characterization
,
2001
.
47
(
1
): p.
9
16
.
23.
Vignesh
,
S.
,
K.
Shanmugam
,
V.
Balasubramanian
, and
K.
Sridhar
,
Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings
.
Defence technology
,
2017
.
13
(
2
): p.
101
110
.
24.
Lee
,
C.
,
J.
Han
,
J.
Yoon
,
M.
Shin
, and
S.
Kwun
,
A study on powder mixing for high fracture toughness and wear resistance of WC–Co–Cr coatings sprayed by HVOF.
Surface and coatings technology
,
2010
.
204
(
14
): p.
2223
2229
.
25.
Chivavibul
,
P.
,
M.
Watanabe
,
S.
Kuroda
, and
K.
Shinoda
,
Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC–Co coatings.
Surface and Coatings Technology
,
2007
.
202
(
3
): p.
509
521
.
26.
Cheng
,
D.
,
Q.
Xu
,
E.
Lavernia
, and
G.
Trapaga
,
The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying
.
Metallurgical and Materials Transactions B
,
2001
.
32
(
3
): p.
525
535
.
27.
Al-Mutairi
,
S.
,
M.
Hashmi
,
B.
Yilbas
, and
J.
Stokes
,
Microstructural characterization of HVOF/plasma thermal spray of micro/nano WC–12% Co powders.
Surface and Coatings Technology
,
2015
.
264
: p.
175
186
.
28.
Otsubo
,
F.
,
H.
Era
,
K.
Kishitake
, and
T.
Uchida
,
Properties of Cr 3 C 2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes.
Journal of thermal spray technology
,
2000
.
9
(
4
): p.
499
504
.
29.
Ji
,
G.-C.
,
C.-J.
Li
,
Y.-Y.
Wang
, and
W.-Y.
Li
,
Microstructural characterization and abrasive wear performance of HVOF sprayed Cr3C2–NiCr coating.
Surface and Coatings Technology
,
2006
.
200
(
24
): p.
6749
6757
.
30.
Guilemany
,
J.
,
N.
Espallargas
,
P.
Suegama
, and
A.V.
Benedetti
,
Comparative study of Cr3C2–NiCr coatings obtained by HVOF and hard chromium coatings.
Corrosion science
,
2006
.
48
(
10
): p.
2998
3013
.
31.
Nordhorn
,
C.
,
R.
Mücke
,
K.A.
Unocic
,
M.J.
Lance
,
B.A.
Pint
, and
R.
Vaßen
,
Effects of thermal cycling parameters on residual stresses in alumina scales of CoNiCrAlY and NiCoCrAlY bond coats.
Surface and Coatings Technology
,
2014
.
258
: p.
608
614
.
32.
Lu
,
J.
,
Y.
Chen
,
C.
Zhao
,
H.
Zhang
,
L.
Luo
,
B.
Xu
,
X.
Zhao
,
F.
Guo
, and
P.
Xiao
,
Significantly improving the oxidation and spallation resistance of a MCrAlY alloy by controlling the distribution of yttrium.
Corrosion Science
,
2019
.
153
: p.
178
190
.
33.
Evans
,
H.
and
M.
Taylor
,
Diffusion cells and chemical failure of MCrAlY bond coats in thermal-barrier coating systems
.
Oxidation of metals
,
2001
.
55
(
1
): p.
17
34
.
This content is only available via PDF.
You do not currently have access to this content.