Mental health is an important issue today as mental illness as a global health problem ranks fifth in the world. Depression is a major illness that affects many people around the world, and people suffering from depression often have a low level of awareness. It is still common to detect depression using clinical questionnaires. However, using questionnaires for large-scale surveys will consume large human and material resources. Therefore, scientists and researchers from around the world are working to find alternative and objective ways to detect mental depression, especially through EEG signal data. Several studies have shown that abnormal patterns in alpha waves in EEG signals are associated with depression. Still, beta, delta, theta, and gamma waves can also be used for depression detection. Before classification, EEG signal preprocessing is required by filtering using Finite Impulse Response (FIR). EEG signal data will be classified using one of the Machine Learning methods, namely Support Vector Machine (SVM), because, from some existing research, SVM provides superior performance compared to other methods. This research proposes Piecewise Polynomial Smooth Support Vector Machine (PPWSSVM) and Spline Smooth Support Vector Machine (Spline SSVM) for the classification method. This study found that, theoretically, the performance of the piecewise polynomial (PPWSSVM) function is better than the spline function. Classification using PPWSSVM with two channels, namely T3 and T4, provides the highest AUC value of 99.65% and 99.44%, respectively. While classification with one channel, namely T4, the highest AUC value uses Spline SSVM and SSVM.

1.
S.
Wijayati
,
S. A.
Fitriyanti
, and
A.
Arwani
, “
Pengaruh Terapi Spiritual Emotional Freedom Technique (SEFT) Terhadap Penurunan Tingkat Depresi Pada Pasien Kanker Serviks
,”
Medica Hosp. J. Clin. Med.
, vol.
7
, no.
2
, pp.
398
402
,
2020
, doi: .
2.
Y.
DIng
,
X.
Chen
,
Q.
Fu
, and
S.
Zhong
, “
A Depression Recognition Method for College Students Using Deep Integrated Support Vector Algorithm
,”
IEEE Access
, vol.
8
, pp.
75616
75629
,
2020
, doi: .
3.
A.
Sarkar
,
A.
Singh
, and
R.
Chakraborty
, “
A deep learning-based comparative study to track mental depression from EEG data
,”
Neurosci. Informatics
, vol.
2
, no.
4
, p.
100039
,
2022
, doi: .
4.
S.
Sun
,
X.
Li
,
J.
Zhu
,
Y.
Wang
,
R.
La
, and
X.
Zhang
, “
Graph Theory Analysis of Functional Connectivity in Major Depression Disorder with High-Density Resting State EEG data
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
, vol.
PP
, no.
8
, p.
1
,
2019
, doi: .
5.
B.
Hosseinifard
,
M. H.
Moradi
, and
R.
Rostami
, “
Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal
,”
Comput. Methods Programs Biomed.
, vol.
109
, no.
3
, pp.
339
345
,
2013
, doi: .
6.
Y.
Mohammadi
and
M. H.
Moradi
, “
Prediction of Depression Severity Scores Based on Functional Connectivity and Complexity of the EEG Signal
,”
Clin. EEG Neurosci.
, vol.
52
, no.
1
, pp.
52
60
,
2021
, doi: .
7.
W.
Mumtaz
,
L.
Xia
,
S. S. A.
Ali
,
M. A. M.
Yasin
,
M.
Hussain
, and
A. S.
Malik
, “
Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD
),”
Biomed. Signal Process. Control
, vol.
31
, no.
2017
, pp.
108
115
,
2017
, doi: .
8.
Y. J.
Lee
and
O. L.
Mangasarian
, “
SSVM: A smooth support vector machine for classification
,”
Comput. Optim. Appl.
, vol.
20
, no.
1
, pp.
5
22
,
2001
, doi: .
9.
Y. B.
Yuan
and
T. Z.
Huang
, “
A polynomial smooth support vector machine for classification
,”
Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
, vol.
3584
LNAI, pp.
157
164
,
2005
, doi: .
10.
L.
Luo
,
C.
Lin
,
H.
Peng
, and
Q.
Zhou
, “
A study on piecewise polynomial smooth approximation to the plus function
,”
9th Int. Conf. Control. Autom. Robot. Vision, 2006, ICARCV ’06
,
2006
, doi: .
11.
Y.
Yuan
,
W.
Fan
, and
D.
Pu
, “
Spline function smooth support vector machine for classification
,”
J. Ind. Manag. Optim.
, vol.
3
, no.
3
, pp.
529
542
,
2007
, doi: .
12.
S. W.
Purnami
,
A.
Embong
, and
J. M.
Zain
, “
Application of Data Mining Technique using Best Polynomial Smooth Support Vector Machine in Breast Cancer Diagnosis
,”
Int. Conf. Robot. Vision, Signal Symp. Power Appl. (Rovisp 2009)
, pp.
1
5
,
2009
.
13.
Q.
Wu
and
W.
Wang
, “
Piecewise-smooth support vector machine for classification
,”
Math. Probl. Eng.
, vol.
2013
,
2013
, doi: .
14.
I.
Wulandari
, “
Performansi Piecewise Polynomial Smooth Support Vector Machine untuk Klasifikasi Desa Tertinggal di Provinsi Kalimantan Timur Tahun 2011
,”
J. Apl. Stat. dan Komputasi Stat.
, vol.
7
, pp.
21
44
,
2015
.
15.
J.
Zhu
et al, “
An Improved Classification Model for Depression Detection Using EEG and Eye Tracking Data
,”
IEEE Trans. Nanobioscience
, vol.
19
, no.
3
, pp.
527
537
,
2020
, doi: .
16.
N. V.
Babu
and
E. G. M.
Kanaga
, “
Depression Analysis using Electroencephalography Signals and Machine Learning Algorithms
,”
Proc. 2022 3rd Int. Conf. Intell. Comput. Instrum. Control Technol. Comput. Intell. Smart Syst. ICICICT 2022
, pp.
144
149
,
2022
, doi: .
17.
S.
Mahato
,
N.
Goyal
,
D.
Ram
, and
S.
Paul
, “
Detection of Depression and Scaling of Severity Using Six Channel EEG Data
,”
J. Med. Syst.
, vol.
44
, no.
7
,
2020
, doi: .
18.
Y.
Liu
,
C.
Pu
,
S.
Xia
,
D.
Deng
,
X.
Wang
, and
M.
Li
, “
Machine learning approaches for diagnosing depression using EEG: A review
,”
Transl. Neurosci.
, vol.
13
, no.
1
, pp.
224
235
,
2022
, doi: .
19.
N. T.
Mooniarsih
, “
Desain dan Simulasi Filter FIR Menggunakan Metode Windowing
,”
J. ELKHA
, vol.
2
, no.
1
, pp.
41
47
,
2010
.
20.
L.
Tan
and
J.
Jiang
, “
Digital Signal Processing: Fundamentals and Applications, Second Edition
,”
Digit. Signal Process. Fundam. Appl. Second Ed.
, pp.
1
876
,
2013
, doi: .
21.
M.
Diykh
,
Y.
Li
, and
P.
Wen
, “
Classify epileptic EEG signals using weighted complex networks based community structure detection
,”
Expert Syst. Appl.
, vol.
90
, pp.
87
100
,
2017
, doi: .
This content is only available via PDF.
You do not currently have access to this content.