The population numbers of DKI Jakarta, West Java, Central Java, and East Java on an annual basis are crucial data for the strategic planning and assessment of Indonesia’s medium- and long-term national development. These data cannot be provided through the population registration system. In addition, Badan Pusat Statistik (BPS-Statistics Indonesia) only provides the population data on a regular basis for each five-year period. Therefore, the population projection on a yearly basis is required. The common method used in population projection is the cohort component method (CCM). BPS uses CCM for the estimation of Indonesian population. Unfortunately, this method has several drawbacks with less accuracy. One of the promising methods is nowcasting, which predicts the current value based on a variety of socioeconomic and macroeconomic variables with high-frequency data over a yearly period. In this work, machine learning with two different nowcasting methods are evaluated. Support Vector Regression (SVR) and Multi-Output Support Vector Regression (M-SVR) are applied and compared to predict yearly population nowcasts in four provinces. Furthermore, SVR and M-SVR are compared with CCM. The performance comparison is evaluated based on the Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE). The data used are obtained from BPS, with the output variable is the population of DKI Jakarta, West Java, Central Java, and East Java provinces. The results show that the SVR model performs better than the M-SVR model, as shown by the smaller RMSE and MAPE value of the SVR model. In addition, nowcasting method outperforms CCM method, which shows that nowcasting method is a promising tool to substitute CCM in population projection.

1.
BPS
,
Proyeksi Penduduk Indonesia 2015-2045 Hasil SUPAS 2015
, (
2018
). https://www.bps.go.id/publication/2018/10/19/78d24d9020026ad95c6b5965/proyeksi-penduduk-indonesia-2015-2045-hasil-supas-2015.html (accessed March 6, 2023).
2.
P.
Vanella
,
P.
Deschermeier
,
Cohort-Component Model for Population Forecasting – The Case of Germany
,
J. Popul. Ageing
.
13
,
513
545
(
2020
).
3.
United Nations
,
The Cohort Component Method for Making Population Projection
, (
1989
). https://www.un.org/en/development/desa/population/publications/pdf/manuals/projections/module1/chap2.pdf (accessed March 6, 2023).
4.
United Nations
,
World population prospects: the 2015 revision
,
New York
:
United States
,
2015
.
5.
T.
Wilson
,
P.
Rees
,
A brief guide to producing a national population projection, Aust
.
Popul. Stud
.
5
,
77
100
(
2021
).
6.
M.E.
Boon
,
L.P.
Kok
, Classificationof cells in cervical smears, In:
Applicationsrule of Neural Networks
,
Murray
A.F.
, ed.,
Klawer
,
1995
.
7.
A.
Ineichen
.
Nowcasting: A Risk Management Tool
,
Alternative Investment Analyst Review
,
4
,
3
,
45
50
(
2015
).
8.
R.S.
Mariano
,
Y.
Murasawa
,
A new coincident index of business cycles based on monthly and quarterly series
.
Journal of Applied Econometrics, J. Appl. Econom
.
18
,
427
443
, (
2003
).
9.
M.
Bańbura
,
D.
Giannone
,
L.
Reichlin
,
Nowcasting, Work. Pap. Ser
.
1275
(
2010
).
10.
J.P.
Holdren
,
Population and the energy problem, Popul
.
Environ
.
12
,
231
255
(
1991
).
11.
M.A.
Fishman
,
Density effects in population growth: an exploration
,
Biosystems
.
40
,
219
236
, (
1997
).
12.
Kementerian Pekerjaan Umum dan Perumahan Rakyat
,
Kapasitas dan Layanan PDAM
, (
2022
). https://data.pu.go.id/dataset/kapasitas-dan-layanan-pdam (accessed April 12, 2022).
13.
S.
Ge
,
D.T.
Yang
,
J.
Zhang
,
Population policies, demographic structural changes, and the Chinese household saving puzzle
,
Eur. Econ. Rev
.
101
,
181
209
. (
2018
)
14.
Filipović
,
Sanja
,
Ignjatović
,
Suzana
,
The effects of Chinese population policy on the labor market
,
Stanovnistvo
.
60
(
2022
).
15.
OECD
,
Fertility rates
, (
2021
). https://data.oecd.org/pop/fertility-rates.htm (accessed April 13, 2023).
16.
OECD
, “Regional GDP”, in
OECD Factbook 2008: Economic, Environmental and Social Statistics
,
OECD Publishing
,
Paris
,
2009
. .
17.
United Nations, Machine Learning for Official Statistics
,
United Nations
,
Geneva, Switzerland
,
2021
.
18.
S.
Shin
,
P.C.
Austin
,
H.J.
Ross
,
H.
Abdel-Qadir
,
C.
Freitas
,
G.
Tomlinson
,
D.
Chicco
,
M.
Mahendiran
,
P.R.
Lawler
,
F.
Billia
,
A.
Gramolini
,
S.
Epelman
,
B.
Wang
,
D.S.
Lee
,
Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality, ESC Hear
.
Fail
.
8
,
106
115
(
2021
).
19.
A.
Cerasa
,
G.
Tartarisco
,
R.
Bruschetta
,
I.
Ciancarelli
,
G.
Morone
,
R.S.
Calabrò
,
G.
Pioggia
,
P.
Tonin
,
M.
Iosa
,
Predicting Outcome in Patients with Brain Injury: Differences between Machine Learning versus Conventional Statistics
,
Biomedicines
.
10
(
2022
).
20.
S.M.R.H.
Shawon
,
M.A.
Saaklayen
,
X.
Liang
,
Wind Speed Forecasting by Conventional Statistical Methods and Machine Learning Techniques, in: 2021 IEEE Electr
.
Power Energy Conf.
,
2021
: pp.
304
309
.
21.
J.
Xiong
,
C.
Lin
,
Z.
Cao
,
M.
Hu
,
K.
Xue
,
X.
Chen
,
R.
Ma
,
Development of remote sensing algorithm for total phosphorus concentration in eutrophic lakes: Conventional or machine learning?
,
Water Res
.
215
,
118213
(
2022
).
22.
H.
Akinci
,
M.
Zeybek
,
Comparing classical statistic and machine learning models in landslide susceptibility mapping in Ardanuc (Artvin), Turkey, Nat
.
Hazards
.
108
,
1515
1543
(
2021
).
23.
J.
Gong
,
G.
Wang
,
Y.
Wang
,
X.
Chen
,
Y.
Chen
,
Q.
Meng
,
P.
Yang
,
Y.
Yao
,
Y.
Zhao
,
Nowcasting and forecasting the care needs of the older population in China: analysis of data from the China Health and Retirement Longitudinal Study (CHARLS)
,
Lancet Public Heal
.
7
e1005
e1013
(
2022
).
24.
D.R.
Leasure
,
R.
Kashyap
,
F.
Rampazzo
,
C.A.
Dooley
,
B.
Elbers
,
M.
Bondarenko
,
M.
Verhagen
,
A.
Frey
,
J.
Yan
,
E.T.
Akimova
,
M.
Fatehkia
,
R.
Trigwell
,
A.J.
Tatem
,
I.
Weber
,
M.C.
Mills
,
Nowcasting Daily Population Displacement in Ukraine through Social Media Advertising Data, Popul
.
Dev. Rev. n/a
(
2023
).
25.
T.
Wilson
,
I.
Grossman
,
M.
Alexander
,
P.
Rees
,
J.
Temple
,
Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs
,
Popul. Res. Policy Rev
.
41
,
865
898
(
2022
).
26.
T.
Wilson
,
I.
Grossman
,
J.
Temple
,
Evaluation of the best M4 competition methods for small area population forecasting
,
Int. J. Forecast
.
39
,
110
122
(
2023
).
27.
A.G.
Losada
,
N.D.
Brown
,
Machine Learning Techniques to Forecast Population Using Eurostat Data: An Exploratory Study [PowerPoint slides]
, in:
Eur. Conf. Qual. Off. Stat
.
Q2018
, Krakow,
2018
.
28.
O.
Folorunso
,
A.T.
Akinwale
,
O.E.
Asiribo
,
T.A.
Adeyemo
,
Population prediction using artificial neural network
,
African J. Math. Comput. Sci. Res
.
3
,
155
162
(
2010
).
29.
T. Mageto, Am.
,
Estimating Population Total Using Machine Learning Logistic Regression: COVID-19 Pandemic Challenges Perspective
,
J. Theor. Appl. Stat
.
10
,
22
31
(
2021
).
30.
F. V.
Şahinarslan
,
A.T.
Tekin
,
F.
Çebi
,
Application of machine learning algorithms for population forecasting
,
Int. J. Data Sci
.
6
,
257
270
(
2021
).
31.
F.C.
İskenderoğlu
,
M.K.
Baltacioğlu
,
M.H.
Demir
,
A.
Baldinelli
,
L.
Barelli
,
G.
Bidini
,
Comparison of support vector regression and random forest algorithms for estimating the SOFC output voltage by considering hydrogen flow rates
,
Int. J. Hydrogen Energy
.
45
,
35023
35038
(
2020
).
32.
C.
Rao
,
Y.
Zhang
,
J.
Wen
,
X.
Xiao
,
M.
Goh
,
Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model
,
Energy
.
263
,
125955
(
2023
).
33.
B.
Li
,
G.
Yang
,
R.
Wan
,
X.
Dai
,
Y.
Zhang
, C,
Comparison of random forests and other statistical methods for the prediction of lake water level: a case study of the Poyang Lake in China, Hydrol
.
Res
.
47
,
69
83
(
2016
).
34.
X.
Nong
,
C.
Lai
,
L.
Chen
,
D.
Shao
,
C.
Zhang
,
J.
Liang
,
Prediction modelling framework comparative analysis of dissolved oxygen concentration variations using support vector regression coupled with multiple feature engineering and optimization methods: A case study in China, Ecol
.
Indic
.
146
,
109845
(
2023
).
35.
P. Kumar, A.K. Singh, A Comparison between MLR, MARS
,
SVR and RF Techniques: Hydrological Time-series Modeling, J
.
Human, Earth, Futur
.
3
,
90
98
(
2022
).
36.
J.
Patel
,
S.
Shah
,
P.
Thakkar
,
K.
Kotecha
,
Predicting stock market index using fusion of machine learning techniques, Expert Syst
.
Appl
.
42
,
2162
2172
(
2015
).
37.
W.
Wang
,
F.
Dou
,
X.
Yu
,
G.
Liu
,
L.
Zhang
,
Q.
Zhang
,
D.
Xie
,
Load forecasting method based on SVR under electricity market reform, IOP Conf
.
Ser. Earth Environ. Sci
.
467
,
12201
(
2020
).
38.
M.
Sanchez-Fernandez
,
M.
de-Prado-Cumplido
,
J.
Arenas-Garcia
,
F.
Perez-Cruz
,
SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems, IEEE Trans, IEEE Trans
.
Signal Process
.
52
,
2298
2307
(
2004
).
39.
S.D.R.
Septiani
,
A.
Latip
,
W.N.
Kamilah
,
C.
Suwanda
,
Analisis Komparatif Metode Jacobian Dan Metode Euler Dalam Kasus Proyeksi Jumlah Penduduk
,
J. Ris. Mat. Dan Sains Terap
.
2
,
29
38
(
2022
).
40.
R.N.
Gurianto
,
I.
Purnamasari
,
D.
Yuniart
,
Eramalan Jumlah Penduduk Kota Samarinda Dengan Menggunakan Metode Pemulusan Eksponensial Ganda dan Tripel Dari Brown
,
J. EKSPONENSIAL
.
7
,
23
32
(
2016
).
41.
D.
Anggreini
,
Enerapan Model Populasi Kontinu Pada Perhitungan Proyeksi Penduduk Di Indonesia (Studi Kasus: Provinsi Jawa Timur)
,
E-Jurnal Mat
.
9
,
229
239
(
2020
).
42.
M.
Ruslan
,
Prediksi Jumlah Penduduk Provinsi Kalimantan Selatan Menggunakan Metode Semi Average
,
J. Softw. Eng
.
2
,
1
7
(
2016
).
43.
S.R.
Harahap
,
Peramalan Jumlah Penduduk Kota Medan Pada Tahun 2021 Dan 2022 Dengan Metode Double Exponential Smoothing Brown [skripsi]
,
2021
.
44.
R.
Puspadin
,
A.
Wanto
,
N.
Arminarahmah
,
Penerapan ML dengan Teknik Bayesian Regulation untuk Peramalan Usia Penduduk di Beberapa Negara Asia
,
J. Comput. Syst. Informatics
.
3
,
147
155
(
2022
).
45.
A.
Lasarudin
,
R.
Maku
,
Prediksi Pertumbuhan Jumlah Penduduk Menggunakan Algoritma Neural Network (Nn)
,
J. Ilmu Komput
.
2
(
2021
).
46.
S.I.Y.
Ardian
,
T.
Rismawan
,
D.M.
Midyanti
,
Penerapan Metode Extreme Learning Machine Untuk Peramalan Jumlah Kepadatan Penduduk Di Kalimantan Barat
,
Coding J. Komput. Dan Apl
.
7
,
34
43
(
2019
).
47.
R.S.
Mariano
,
Y.
Murasawa
,
A new coincident index of business cycles based on monthly and quarterly series
,
J. Appl. Econom
.
18
,
427
443
(
2003
).
48.
A.
Clayton-Matthews
,
J.H.
Stock
,
An application of the Stock/Watson index methodology to the Massachusetts economy
,
J. Econ. Soc. Meas
.
25
,
183
233
. (
1999
).
49.
M.
das
C.
Moura
,
E.
Zio
,
I.D.
Lins
,
E.
Droguett
,
Failure and reliability prediction by support vector machines regression of time series data, Reliab
.
Eng. Syst. Saf
.
96
,
1527
1534
(
2011
).
50.
S.R.
Gunn
,
Support vector machines for classification and regression
,
1998
.
51.
V.N.
Vapnik
,
The Nature of Statistical Learning Theory
,
2000
. .
52.
W.
Karush
, "
Minima of functions of several variables with inequalities as side constraints
", M. Sc. Diss.
Dept. Math. Univ. Chicago
. (
1939
).
53.
A.J.
Smola
,
B.
Schölkopf
,
A tutorial on support vector regression, Stat
.
Comput
.
14
,
199
222
(
2004
).
54.
J.
Che
,
J.
Wang
,
Short-term load forecasting using a kernel-based support vector regression combination model, Appl
.
Energy
.
132
,
602
609
(
2014
).
55.
N.J. Nilsson, Learning machines.
, (
1965
).
56.
J.
Mao
,
W.
Xu
,
Y.
Yang
,
J.
Wang
,
Z.
Huang
,
A.
Yuille
,
Deep captioning with multimodal recurrent neural networks (m-rnn)
,
Arxiv
. (
2014
).
57.
K.
Cheng
,
Z.
Lu
,
K.
Zhang
,
Multivariate output global sensitivity analysis using multi-output support vector regression
,
Struct. Multidiscip. Optim
.
59
,
2177
2187
(
2019
).
58.
F.
Pérez-Cruz
,
A.N.
Vázquez
,
P.L.
Alarcón-Diana
,
A.
Artés-Rodríguez
,
An IRWLS procedure for SVR
, in:
2000 10th Eur. Signal Process. Conf.
,
2000
: pp.
1
4
.
59.
B.
Schölkopf
,
R.
Herbrich
,
A.J.
Smola
,
A Generalized Representer Theorem BT - Computational Learning Theory
, in:
D.
Helmbold
,
B.
Williamson
(Eds.),
Springer
Berlin Heidelberg
, Berlin, Heidelberg,
2001
: pp.
416
426
.
60.
N.
Anand
,
R.
Ranjan
,
S.
Varma
,
MSVR based range-free localization technique for 3-D sensor networks, Wirel
.
Pers. Commun
.
97
,
6221
6238
(
2017
).
61.
D.
Borup
,
P.G.
Coulombe
,
D.
Rapach
,
E.C.M.
Schütte
,
S.
Schwenk-Nebbe
,
The Anatomy of Out-of-Sample Forecasting Accuracy, FRB Atlanta Work
.
Pap
.
1
53
(
2022
).
62.
F.
Bell
,
S.
Smyl
,
Forecasting at Uber: An Introduction
, (
2018
).
This content is only available via PDF.
You do not currently have access to this content.