TiO2/ZnxNi1-xFe2O4 nanocomposites (x = 0; 0.2; 0.4; 0.6; 0.8; and 1) were synthesized using a co-precipitation method at annealing temperature of 600°C for 3 hours. X-ray diffraction pattern showed high percentage of anatase TiO2 phase and slight proportion of Zn-NiFe2O4 spinel ferrite phase. The lattice parameters in all samples are in the range a = b = 3.782-3.791 Å and c = 9.487-9.524 Å. Crystal size tends to decrease with the addition of Zn content between 11.34-15.64 nm. The results of SEM characterization showed that the particle size of the sample x = 0.2 and 0.8 were 95.9 nm and 110.8 nm, respectively. The FTIR spectra was measured at a wave number of 400-4000 cm−1. The vibration of metal ion with oxygen (M-O) occurred at wave number of 416.62 cm−1, which confirmed the structure of spinel in the TiO2/ZnxNi1-xFe2O4 nanocomposites. The presence of the titanium dioxide phase was confirmed by wave number 671.64 cm−1 in the FTIR spectrum which is the Ti-O-Ti vibration. The energy gap of TiO2/ZnxNi1-xFe2O4 nanocomposites decreased with the addition of Zn content in the range of 2.77-3.01 eV. The value obtained is lower than the band gap energy of pure TiO2. The highest degradation of RhB dye was 35.94% with a degradation rate of 0.002 minutes−1 which was found on the sample x = 0.2 for 120 minutes.

1.
World Trade Organization
. (
2020
).
World Trade Statistical Review 2020.
Retrieved from www.wto.org/statistics
2.
Sadiq
,
M. M. J.
, &
Nesaraj
,
A. S.
(
2015
).
Soft chemical synthesis and characterization of BaWO4 nanoparticles for photocatalytic removal of Rhodamine B present in water sample
,
5
,
45
54
.
3.
Istiqomah
,
N. I.
,
Muzakki
,
A. T.
,
Nofrianti
,
A.
,
Suharyadi
,
E.
,
Kato
,
T.
, &
Iwata
,
S.
(
2020
).
The Effect of Silica on Photocatalytic Degradation of Methylene Blue Using Silica-Coated NiZn Ferrite Nanoparticles
,
855
,
268
271
.
4.
Shan
,
A. Y.
,
Ghazi
,
T. I. M.
, &
Rashid
,
S. A.
(
2010
).
Immobilisation of Titanium Dioxide onto Supporting Materials in Heterogeneous Photocatalysis : A Review
,
389
(
1–2
),
1
8
. https://doi.org/j.apcata.2010.08.053
5.
Kaiwen
,
Z.
,
Liqin
,
Q.
,
Xuehang
,
W.
,
Wenwei
,
W.
,
Yuexiao
,
S.
,
Yulin
,
T.
, &
Jieyue
,
L.
(
2015
).
Structure and magnetic properties of manganese–nickel ferrite with lithium substitution
,
41
(
1
),
12
35
.
6.
Herdiman
,
Saputra
, A. I.,
Suharyadi
,
E.
,
Kato
,
T.
, &
Iwata
,
S.
(
2019
).
Effect of Ni and Annealing Temperature on Crystal Structure and Magnetic Properties of MnNi-Fe2O4 Nanoparticles
.
In 9th Annual Basic Science International Conference
(Vol.
546
(
1
), pp.
1
7
). Presented at the IOP Conf. Series: Materials Science and Engineering, Malang, Indonesia: IOP Publishing.
7.
Nurmayansih
,
A.
,
Hariani
,
P. L.
, &
Said
,
M.
(
2021
).
Synthesis NiFe2O4 Nanoparticles by Co-Precipitation Method for Degradation of Congo Red Dye
,
6
(
3
),
115
121
.
8.
Srinivasan
,
S. S.
,
Wade
,
J.
, &
Stefanakos
,
E. K.
(
2006
).
Synthesis and Characterization of Photocatalytic TiO2-ZnFe2O4 Nanoparticles
.
Hindawi Publishing Corporation
,
1
4
.
9.
Thakur
,
A.
,
Kumar
,
P.
,
Rana
,
K.
,
Chevalier
,
A.
,
Mattei
,
J. L.
, &
Queffelec
,
P.
(
2016
).
Enchancement of Magnetic Properties of Ni0.5Zn0.5Fe2O4 Nanoparticles Prepared by The Co-precipitation Method
,
42
(
9
),
10664
10670
.
10.
Nabiyouni
,
G.
, &
Ghanbari
,
D.
(
2018
).
Simple Preparation of Magnetic, Antibacterial, and Photo-Catalyst NiFe2O4TiO2 Pt Nanocomposites
,
8
(
4
),
408
416
.
11.
Hardian
,
A.
,
Devikha
,
Budiman
, S.,
Sujono
,
H.
,
Murniati
,
A.
,
Kusumaningtyas
,
V. A.
, &
Syarif
,
D. G.
(
2021
).
Synthesis of TiO2-NiFe2O4 Nanocomposites using Coprecipitation Method as Photocatalyst for Methylene Blue Removal
(Vol.
882
, pp.
1
8
). Presented at the IOP Conference Series: Earth and Enviromental Science, Bandung, Indonesia: IOP Publishing Ltd. Retrieved from https://iopscience.iop.org/article/10.1088/1755-1315/882/1/012022/meta
12.
Rahmayeni
,
Arief, S.
,
Rizal
,
R.
,
Stiadi
,
Y.
, &
Zulhadjri
. (
2012
).
Synthesis of Magnetic Nanopartiles of TiO2-NiFe2O4: Characterization and Photocatalytic Activity on Degradation of Rhodamin B
,
12
(
3
),
229
234
.
13.
Xu
,
Q.
,
Feng
,
J.
,
Li
,
L.
,
Xiao
,
Q.
, &
Wang
,
J.
(
2015
).
Hollow ZnFe2O4/TiO2 Composits: High Performance and Recyclable Visible Light Photocatalyst
.
Elsevier Science
,
641
,
110
118
.
14.
Lu
,
Y.
,
Hou
,
X.
,
Cheng
,
K.-H.
, &
Feng
,
W.
(
2015
).
Photocatalytic Properties of TiO2 inducted by ZnFe2O4 Nanoparticles under Visible Light Irradiation
.
15.
Istikhomah
,
N.
,
Widakdo
,
J.
,
Rifianto
,
A.
,
Suharyadi
,
E.
,
Kato
,
T.
, &
Iwata
,
S.
(
2017
).
Effect of Zn Concentration on Crystal Structure and Magnetic Properties of ZnxNi1-xFe2O4 Nanoparticles Fabricated by Co-precipitation Method
.
In Proceedings of the 2017 IEEE
(pp.
151
152
). Presented at the Nanotechnology Material and Devices Conference,
Singapore
:
IEEE
.
16.
Chandrika
,
M.
,
Ravindra
,
A. V.
,
Rajesh
,
Ch.
,
Ramarao
,
S. D.
, &
Ju
,
S.
(
2019
).
Studies on Structural and Optical Properties of Nano ZnFe2O4 and ZnFe2O4-TiO2 Composite Synthesized by Co-precipitation Route
.
Elsevier B.V.
,
230
,
107
113
.
17.
Deshmukh
,
S. S.
,
Humbe
,
A. V.
,
Kumar
,
A.
,
Dorik
,
R. G.
, &
Jadhav
,
K. M.
(
2017
).
Urea Assited Synthesis of Ni1-xZnxFe2O4 (x=0-0.8) : Magnetic and Mossbauer Investigation
,
704
,
227
236
.
18.
Sharifi
,
I.
, &
Shokrollahi
,
H.
(
2012
).
Nanostructural, Magnetic, and Mossbauer Studies of Nanpsized Co1-xZnxFe2O4 Synthesized by Co-precipitation
,
324(15
),
2397
2403
.
19.
Mrotek
,
E.
,
Dudziak
,
S.
,
Malinowska
,
I.
, &
Daniel
Pelczarski
. (
2020
).
Improved Degradation of Etodolac in the Presence of Core-Shell ZnFe2O4/SiO2/TiO2 Magnetic Photocatalyst
.
Elsevier B.V.
,
724
,
131168
.
20.
Coromelci
,
C.
,
Neamtu
,
M.
,
Ignat
,
M.
,
Samoira
,
P.
,
Zaltariov
,
M. F.
, &
Palamaru
,
M.
(
2022
).
Ultrasound Assisted Synthesis of Heterostructured TiO2/ZnFe2O4 and TiO2/ZnFe1.98La0.02O4 System as Tunale Photocatalysts for Efficient Organic Pollutants Removal
,
48
,
4829
4840
.
21.
Keiteb
,
A. S.
,
Saion
,
E.
,
Zakaria
,
A.
,
Soltani
,
N.
, &
Abdullahi
,
N.
(
2016
).
A Modified Thermal Treatment Method for the Up-Scalable Synthesis of Size-Controlled Nanocrystalline Titania
,
6
(
10
).
22.
Mahalingam
,
T.
,
Selvakumar
,
C.
,
Kumar
,
E. R.
, &
Venkatachalam
,
T.
(
2017
).
Structural, Optical, Morphological and Thermal Properties of TiO2-Al and TiO2-Al2O3 Composite Powders by Ball Milling
,
381
(
21
),
1815
1819
.
23.
Kim
,
T. K.
,
Lee
,
M. N.
,
Lee
,
S. H.
,
Park
,
Y. C.
,
Jung
,
C. K.
, &
Boo
,
J. H.
(
2005
).
Development of Surface Coating Technology of TiO2 Powder and Improvement of Photocatalytic Activity by Surface Modification
,
475
(
1–2
),
171
177
.
24.
Liu
,
H.
,
Zhang
,
Z.-G.
,
Wang
,
X.-X.
,
Nie
,
G.-D.
,
Zhang
,
J.
,
Zhang
,
S.-X.
, …
Long
,
Y.-Z.
(
2018
).
Highly Flexible Fe2O3/TiO2 Composite Nanofibers for Photocatalysis and Ultraviolet Detection
,
121
,
2336
246
.
25.
Chiu
,
Y.-H.
,
Chang
,
T. F. M.
,
Chen
,
C.-Y.
,
Sone
,
M.
, &
Hsu
,
Y.-J.
(
2019
).
Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts
,
9
(
5
).
26.
Indrayana
,
I. P. T.
,
Julian
,
T.
, &
Suharyadi
,
E.
(
2018
).
UV Light-Driven Photodegradation of Methylene Blue by Using Mn0,5Zn0,5Fe2O4/SiO2 Nanocomposites
.
In IOP Conf Series: Journal of Physics. Presented at the The International Conference on Theoretical and Applied Physics
,
IOP Publishing
.
This content is only available via PDF.
You do not currently have access to this content.