The mean-variance Markowitz model assumes that historical data can accurately predict the condition of the securities market in the future. However, this may not be true due to the high volatility in the financial market, leading to imprecise information. Fuzzy approaches are deemed to be a sound alternative when dealing with indefinite information and abnormal data. This paper compares three models which are the mean-variance Markowitz model, the median-variance model, and the fuzzy median variance model. The median is one of the robust statistics less affected by deviations than the mean. Both approaches are demonstrated on shares of the KLCI Bursa Malaysia. The empirical result shows that the fuzzy median variance employing the trapezoidal fuzzy numbers model presents lower risk and better performance than the Markowitz mean-variance and median-variance models.

1.
H.
Markowitz
,
The Journal of Finance
,
7
(
1
),
77
91
(
1952
).
2.
S. H.
Jaaman
,
W. H.
Lam
and
Z.
Isa
,
Journal of Quality Measurement and Analysis
,
7
(
1
),
77
84
(
2011
).
3.
S. H.
Jaaman
,
W. H.
Lam
and
Z.
Isa
,
Sains Malaysiana
,
42
(
6
),
875
880
(
2013
).
4.
S. H.
Jaaman
,
W. S.
Lam
and
H.
Ismail
,
Wulfenia Journal
,
22
(
1
),
356
363
(
2015
).
5.
L.
De Silva
,
D.
Alem
,
F.
de Carvalho
,
Production
27
,
1
14
(
2017
).
6.
B.
Glensk
and
R.
Madlener
,
Energies
,
11
,
1
22
(
2018
).
7.
L A.
Zadeh
,
Fuzzy Sets and Systems
,
1
,
3
28
(
1978
).
8.
S. P.
Chen
,
European J. Oper. Res.
,
157
,
429
438
(
2004
).
9.
E.
Vercher
,
J. Comput. Appl. Math.
,
217
,
381
393
(
2008
).
10.
S.
Liu
,
J. Comput. Appl. Math.
,
235
,
4149
4157
(
2011
).
11.
H. B.
Salah
,
M.
Chaouch
,
A.
Gannoun
,
C.
de Peretti
and
A.
Trabelsi
,
Ann. Oper. Res.
,
262
(
2
),
653
681
(
2018
).
12.
B.
Dhakonlayodhin
,
Advances and Applications in Statistics
,
53
(
4
),
313
324
(
2018
).
13.
H. R.
Erfanian
,
M. J.
Abdi
and
S.
Kahrizi
,
MJ Journal on Financial Mathematics
,
1
(
1
),
1
10
(
2016
).
14.
N. S.
Datta
,
H. S.
Dutta
and
K.
Majumder
,
Biometrics: Concepts, Methodologies, Tools, and Applications, IGI Global
,
907
932
(
2017
).
15.
O. S.
Fard
and
M.
Ramezanzadeh
,
Complexity
,
1
,
1
12
(
2017
).
16.
K.
Thiagarajah
,
Advances and Applications in Statistics
,
13
(
1
),
83
94
(
2009
).
17.
Z. Ali
Othman
,
A. M.
Adabashi
,
S.
Zainudin
and
S.
Al Hashmi
,
Jurnal Teknologi Maklumat and Multimedia
,
10
,
1
11
(
2011
).
18.
S. N. Zainol
Abidin
,
S. H.
Jaaman
,
M.
Ismail
and
A. S. Abu
Bakar
,
Symmetry
,
12
(
7
),
1148
(
2020
).
19.
R. Mohd
Dom
,
B.
Abidin
,
S. Abdul
Kareem
,
S. M.
Ismail
and
N. Mohd
Daud
,
Sains Malaysiana
,
41
(
5
),
633
640
(
2012
).
20.
M. H.
Lee
and
Suhartono
,
Journal of Quality Measurement and Analysis
,
8
(
1
),
85
95
(
2012
).
21.
S.
Wang
and
S.
Zhu
,
Fuzzy Optim. Decis. Mak.
,
1
,
361
377
(
2002
).
22.
Y.
Fang
,
K.
Lai
and
S.
Wang
,
Springer, Berlin/Heidelberg
,
Germany, New York, NY, USA
(
2008
).
23.
D.
Dubois
and
H.
Prade
,
Fuzzy Sets and Systems
,
24
(
3
),
279
300
(
1987
).
24.
S.
Bodjanova
,
Inform. Sci.
,
172
,
73
89
(
2005
).
This content is only available via PDF.
You do not currently have access to this content.