With the help of the recently created met heuristic algorithms Jaya Algorithm and Improved Cuckoo Search Algorithm, numerous optimization algorithms are solved. We provide a novel technique in this paper called ICS-Jaya, which combines the Improved Cuckoo Search algorithm and the Jaya algorithm’s idea. The advantages of both approaches are combined in the ICS-Jaya algorithm. The training of feed forward neural networks for a single benchmark classification problem is then done using it. The outcomes of the suggested algorithm are then contrasted with those of the conventional improved cuckoo search.

1.
Q.
Zhang
,
K.
Gupta
, ‘
Neural Networks for RF and Microwave Design-From Theory to Practice
’,
IEEE Transactions on Microwave Theory and Techniques
,
51
(
4
), pp
1339
1350
, (
2003
)
2.
A.
Chronopoulos
,
J.
Sarangapani
, ‘A distributed discrete time neural network architecture for pattern allocation and control’,
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02)
,
Florida, USA
Pp,
204
211
, (
2002
).
3.
K.
Tuba
and
Y.
Tulay
, ‘
Breast Cancer Diagnosis Using Statistical Neural Networks
’,
Journal of Electrical And Electronics Engineering
,
4
(
2
), pp.
1149
1153
, (
2004
)
4.
D.
Sudhir
,
G.
Ashok
,
Amol P.
Pande
, ‘Neural Network Aided Breast Cancer Detection and Diagnosis Using Support Vector Machine’,
Proceedings of the International conference on Neural Networks
,
Cavtat, Croatia
, June 12-14, pp.
158
163
, (
2006
).
5.
L. Renato
De
,
C.
Rosario
and
M.
Emanuela
, ‘
A Successive Overrelaxation Backpropagation Algorithm for Neural-Network Training
’,
IEEE Transactions on Neural Networks
, vol.
9
(
3
), May, pp.
381
388
, (
1998
)
6.
V.
Pentapalli
,
R.
Verma
, ‘
Cuckoo Search Optimization and its Applications: A Review
’,
International Journal of Advanced Research in Computer and Communication Engineering
,
5
, Issue
11
, November (
2016
)
7.
X.S.
Yang
,
S.
Deb
, “Cuckoo search via Lévy flights”,
Proc. World Congress on Nature and Biologically Inspired Computing-NaBIC
,
Coimbatore, India
, December, pp.
210
214
(
2009
).
8.
Y.M.
Victoria
,
M.S.
Rodrigo
,
M.
Carolina
, “
Cuckoo Search approach enhanced with genetic replacement of abandoned nests applied to optimal allocation of distributed generation units
”,
IET Journal
, April (
2018
)
9.
M.
Kamoona
,
J.
Patra
,
A.
Stojcevski
, “
An Enhanced Cuckoo Search Algorithm for Solving Optimization Problems
”,
Conference Paper
, July (
2018
)
10.
M.A.
Al-Abaji
, “
A Literature Review of Cuckoo Search Algorithm
”,
Journal of Education and Practice
,
11
(
8
), (
2020
)
11.
I.
Fister
Jr
,
D.
Fister
,
I.
Fister
, “
Cuckoo Search: A Brief Literature Review
”,
part of Studies in Computational Intelligence book series, SCI
,
11
, pp
49
62
, (
2020
)
12.
X.S.
Yang
,
S.
Deb
, “
Cuckoo search recent advances and applications
”,
Neural Computing and Applications
24
, March, pp
169
174
,(
2013
)
13.
M.
Shehab
,
A.T.
Khader
,
M.A.
Al-Betar
, “
A Survey on applications and variants of the cuckoo search algorithm
”,
Applied Soft Computing
,
61
, pp.
1041
1059
, September(
2017
)
14.
E.
Valian
,
S.
Mohanna
, and
S.
Tavakoli
, “
Improved Cuckoo Search Algorithm for feed forward Neural Network Training
”,
International Journal of Artificial Intelligence & Applications
, Vol.
2
, No.
3
, July (
2011
)
15.
R.V.
Rao
, “
Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems
”,
Int. J. Ind. Eng. Compute
7
,
19
34
(
2016
)
16.
S.
Mishra
and
P.K.
Ray
, “
Power quality improvement using photovoltaic fed DSTATCOM based on Jaya optimization
”,
IEEE Trans. Sust. Energy
99
, pp.
1
9
, (
2016
)
17.
C.
Gong
, “
An Enhanced Jaya Algorithm with a Two Group Adaption
”,
International Journal of Computational Intelligence Systems
10
,
1102
1115
(
2017
)
18.
K.
Yu
,
J.
Liang
,
B.
Qu
,
X.
Chen
, and
H.
Wang
, “
Parameters identification of photovoltaic models using an improved JAYA optimization algorithm
”,
Energy Conversion and Management
150
,
742
753
(
2017
)
19.
K.
Gao
,
Y.
Zhang
,
A.
Sadollah
,
A.
Lentzakis
, and
R.
Su
, “
Jaya harmony search and water cycle algorithms for solving large-scale real-life urban traffic light scheduling problem
”,
Swarm and Evolutionary Computation
37
,
58
72
(
2017
)
20.
R.V.
Rao
, and
K.C.
More
, “
Design optimization and analysis of selected thermal devices using self-adaptive Jaya algorithm
”,
Energy Conversion and Management
140
,
24
35
(
2017
)
21.
S.P.
Singh
,
T.
Prakash
,
V.
Singh
, and
M.G.
Babu
, “
Analytic hierarchy process based automatic generation control of multi-area interconnected power system using Jaya algorithm
”,
Engineering Applications of Artificial Intelligence
60
, pp.
35
44
(
2017
)
22.
R.V.
Rao
and
A.
Saroj
, “
Economic optimization of shell-and-tube heat exchanger using Jaya algorithm with maintenance consideration
”,
Swarm and Evolutionary Computation
,
116
, pp.
473
487
(
2017
)
23.
R.V.
Rao
, and
A.
Saroj
, “
A self-adaptive multi-population based Jaya algorithm for engineering optimization
”,
Swarm and Evolutionary Computation
,
37
, pp.
1
37
(
2017
)
24.
R.V.
Rao
, and
A.
Saroj
, “
Multi-objective design optimization of heat exchangers using elitist-jaya algorithm
”,
Energy Systems
9
, pp.
305
341
(
2018
)
25.
J.T.
Yu
,
C.H.
Kim
,
A.
Wadood
,
T.
Khurshaid
, and
S.B.
Rhee
, “
Jaya algorithm with self-adaptive multi-population and levy flights for solving economic load dispatch problems
”,
IEEE Access
7
, pp.
21372
21384
(
2019
)
26.
J.H.
Holland
, “
Adaptation in natural and artificial systems
”,
University of Michigan Press
,
Ann Arbor, MI
, (
1975
)
27.
D.E.
Goldberg
, “
Genetic algorithms in search, optimization and machine learning
”,
Addison Wesley
,
Boston, MA
, (
1989
)
28.
L.J.
Fogel
,
A.J.
Owens
,
M.J.
Walsh
, “
Artificial intelligence through simulated evolution
”,
John Wiley
,
Chi Chester, UK
, (
1996
)
29.
K.
De Jong
, “
Analysis of the behavior of a class of genetic adaptive systems
”, Ph.D. Thesis,
University of Michigan
,
Ann Arbor, MI
, (
1975
)
30.
J.R.
Koza
, “
Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems
”, Rep. No. STAN-CS-90-1314,
Stanford University
, CA, (
1990
)
31.
R.
Storn
, “Differential evolution design of an IIR-filter”,
IEEE International Conference on Evolutionary Computation
,
Nagoya
, pp
268
273
,(
1996
)
32.
J.
Kennedy
,
R.C.
Eberhart
, “
Particle swarm optimization
”,
Proceedings of IEEE International Conference on Neural Networks
, pp
1942
1948
,(
1995
).
33.
F.
Glover
, “
Heuristic for integer programming using surrogate constraints
”,
Decision Sci
,
8
(
1
), pp
156
166
, (
1977
)
34.
M.
Dorigo
,
V.
Maniezzo
,
A.
Golomi
, “
Ant system: optimization by a colony of cooperating agents
”,
IEEE Transactions on SMC
,
26
(
1
), pp
29
41
, (
1996
)
35.
S.
Kirkpatrick
,
C.
Gelatt
,
M.
Vecchi
, “
Optimization by simulated annealing. Science
”,
220
, pp
671
680
, (
1983
)
36.
M.
Varshney
,
P.
Kumar
,
T.K.
Sharma
, “
CS-Jaya: Hybridization of Cuckoo and Jaya Algorithm
”,
Springer Science and Business Media LLC
, Chapter
73
(
2023
)
37.
X.T.
Li
and
M.H.
Yin
, “
A hybrid cuckoo search via Levy flights for the permutation flow shop scheduling problem
”,
International Journal of Production Research
,
51
(
16
), pp.
4732
4754
, (
2013
)
38.
L.
Fausett
, “
Fundamentals of Neural Networks Architectures Algorithms and Applications
”,
Prentice Hall
, (
1994
)
39.
M.H.
Hassoun
, “
Fundamentals of Artificial Neural Networks
”,
Massachusetts
:
MIT Press, Cambridge
(
2003
)
40.
F.
Paulin
,
A.
Santhakumaran
, “
Classification of Breast cancer by comparing Back propagation training algorithms
”,
International Journal on Computer Science and Engineering
, January (
2011
)
41.
E.
Valian
,
S.
Mohanna
and
S.
Tavakoli
, “
Improved Cuckoo Search Algorithm for Global Optimization
”,
International Journal of Communications Information Technology
, IJCIT1(1), Dec (
2011
)
42.
P.
Kumar
and
A.
Sharma
, “
MRL-JAYA:A Fusion of MRLDE and Jaya Algorithm
”,
Palestine Journal of Mathematics
,
11
(
Special Issue I
), pp.
65
74
, (
2013
)
43.
H.
Zamani
and
H.
Shahraki
, “
Swarm Intelligence Approach for Breast Cancer Diagnosis
”,
International Journal of Computer Applications
,
151
, October (
2016
)
44.
Yuvaraj
,
N.
,
Srihari
,
K.
,
Dhiman
,
G.
,
Somasundaram
,
K.
,
Sharma
,
A.
,
Rajeskannan
,
S.M.G.S.M.A.
,
Soni
,
M.
,
Gaba
,
G.S.
,
AlZain
,
M.A.
and
Masud
,
M.
,
2021
.
Nature-inspired-based approach for automated cyberbullying classification on multimedia social networking
.
Mathematical Problems in Engineering
, 2021, pp.
1
12
.
45.
Singh
,
G.
and
Arya
,
S.K.
,
2019
.
Utility of laccase in pulp and paper industry: A progressive step towards the green technology
.
International journal of biological macromolecules
,
134
, pp.
1070
1084
.
46.
Garg
,
V.
,
Singh
,
H.
,
Bhatia
,
A.
,
Raza
,
K.
,
Singh
,
S.K.
,
Singh
,
B.
and
Beg
,
S.
,
2017
.
Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment
.
AAPS pharmscitech
,
18
, pp.
58
71
47.
Singh
,
G.
,
Gupta
,
M.K.
,
Mia
,
M.
and
Sharma
,
V.S.
,
2018
.
Modeling and optimization of tool wear in MQL-assisted milling of Inconel 718 superalloy using evolutionary techniques
.
The International Journal of Advanced Manufacturing Technology
,
97
, pp.
481
494
.
48.
Bordoloi
,
N.
,
Sharma
,
A.
,
Nautiyal
,
H.
and
Goel
,
V.
,
2018
.
An intense review on the latest advancements of Earth Air Heat Exchangers
.
Renewable and Sustainable Energy Reviews
,
89
, pp.
261
280
.
This content is only available via PDF.
You do not currently have access to this content.