Developing a fast-growing teak wood to fill the gap in industrial wood demand requires an effort to evaluate the wood's properties from its early growth stage. Near Infrared spectroscopy (NIR) in combination with Partial Least Square Regression (PLSR) is well known as rapid and non-destructive analysis of wood qualities. The current study investigated the prediction model of wood properties of 6 years-old Platinum teak, such as density, Modulus of Rupture (MOR), and Modulus of Elasticity (MOE) by using NIR and PLSR. Three trees of Platinum teak were used in this study. The density, MOR, and MOE of the samples were conventionally measured as a standard to build a model. NIR spectra were collected at the wavenumber of 10,000-4,000 cm−1, and then a PLSR analysis was performed on the self-written Python program. The results showed that the density model has adequate R2 validation, but MOR and MOE models have weak models. The density prediction model using the original spectra was better than the second derivative spectra. On the contrary, the best MOR and MOE models were achieved by using second derivative spectra. The regression coefficient for the density model revealed five important bands that affect the model.

1.
R. H. M. J.
Soerianegara
,
I.
&
Lemmens
,
Prosea, plant resources of South-East Asia 5. (1) Timber trees: Major commercial timbers
.
Prosea
,
Bogor
,
1994
.
2.
A.
Martawijaya
,
I.
Kartasujana
.,
K.
Kadir
, and
S.
Prawira
,
Atlas kayu Indonesia Jilid I. Balai Penelitian dan Pengembangan Kehutanan
.
Departemen Kehutanan
,
2005
.
3.
D. E.
Rizanti
et al, “
Comparison of teak wood properties according to forest management: short versus long rotation
,”
Ann. For. Sci.
, vol.
75
, no.
2
,
2018
, doi: .
4.
G.
Lukmandaru
and
K.
Takahashi
, “
Variation in the natural termite resistance of teak ( Tectona grandis Linn. fil.) wood as a function of tree age
,”
Ann. For. Sci.
, vol.
65
, no.
7
, p. pp.
1
,
2008
, doi: .
5.
W.
Darmawan
,
D.
Nandika
,
R. K.
Sari
,
A.
Sitompul
,
I.
Rahayu
, and
D.
Gardner
, “
Juvenile and mature wood characteristics of short and long rotation teak in Java
,”
IAWA J.
, vol.
36
, no.
4
, pp.
428
442
,
2015
, doi: .
6.
D. S.
Adi
et al, “
Evaluation of the Wood Quality of Platinum Teak Wood
,”
Teknol. Indones.
, vol.
39
, no.
1
, pp.
36
44
,
2016
.
7.
D. S.
Adi
,
S. K.
Himmi
, Sudarmanto,
Y.
Amin
,
T.
Darmawan
, and
W.
Dwianto
, “
Radial variation of wood properties of eight years-old fast-growing teak (Tectona grandis - Platinum teak wood
),”
IOP Conf. Ser. Earth Environ. Sci.
, vol.
591
, no.
1
,
2020
, doi: .
8.
M.
Kojima
et al, “
Effect of the lateral growth rate on wood properties in fast-growing hardwood species
,”
J. Wood Sci.
, vol.
55
, no.
6
, pp.
417
424
,
2009
, doi: .
9.
M.
Nocetti
,
P.
Rozenberg
,
G.
Chaix
, and
N.
MacChioni
, “
Provenance effect on the ring structure of teak (Tectona grandis L.f.) wood by X-ray microdensitometry
,”
Ann. For. Sci.
, vol.
68
, pp.
1375
1383
,
2011
, doi: .
10.
S.
Tsuchikawa
and
H.
Kobori
, “
A review of recent application of near infrared spectroscopy to wood science and technology
,”
J. Wood Sci.
, vol.
61
, no.
3
, pp.
213
220
,
2015
, doi: .
11.
T.
Inagaki
et al, “
Eucalyptus camaldulensis density and fiber length estimated by near-infrared spectroscopy
,”
Wood Sci. Technol.
, vol.
46
, no.
1–3
, pp.
143
155
,
2012
, doi: .
12.
O.
Elle
,
R.
Richter
,
M.
Vohland
, and
A.
Weigelt
, “
Fine root lignin content is well predictable with near-infrared spectroscopy
,”
Sci. Rep.
, vol.
9
, no.
1
, pp.
1
11
,
2019
, doi: .
13.
G. R.
Hodge
,
J. J.
Acosta
,
F.
Unda
,
W. C.
Woodbridge
, and
S. D.
Mansfield
, “
Global near infrared spectroscopy models to predict wood chemical properties of Eucalyptus
,”
J. Near Infrared Spectrosc.
, vol.
26
, no.
2
, pp.
117
132
,
2018
, doi: .
14.
K. N.
Segla
et al, “
Useful near infrared spectroscopy model calibrations on solid wood samples of Pterocarpus erinaceus (Poir.) for physical, mechanical and colour properties
,”
J. Near Infrared Spectrosc.
, vol.
25
, no.
4
, pp.
256
266
,
2017
, doi: .
15.
J.
Sandak
,
A.
Sandak
, and
R.
Meder
, “
Assessing trees, wood and derived products with near infrared spectroscopy: Hints and tips
,”
J. Near Infrared Spectrosc.
, vol.
24
, no.
6
, pp.
485
505
,
2016
, doi: .
16.
D. S.
Adi
,
D. A.
Pramasari
, and
W.
Dwianto
, “
Sifat Fisika dan Mekanika Jati Platinum Berumur 6 Tahun pada Arah Radial dan Aksial
,” in
Prosiding Ilmiah Seminar Nasional Lignoselulosa 2020 (The Proceeding of National Symposium of Lignocelulosa 2020)
,
2021
, pp.
113
119
.
17.
A.
Savitzky
and
M. J. E.
Golay
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal Chem
, vol.
36
, no.
8
, pp.
1627
1639
,
1964
, doi: .
18.
S. W.
Hwang
et al, “
NIR-chemometric approaches for evaluating carbonization characteristics of hydrothermally carbonized lignin
,”
Sci. Rep.
, vol.
11
, no.
1
, pp.
1
8
,
2021
, doi: .
19.
M.
Schwanninger
,
J. C.
Rodrigues
, and
K.
Fackler
, “
A review of band assignments in near infrared spectra of wood and wood components
,”
Journal of Near Infrared Spectroscopy
, vol.
19
, no.
5
. pp.
287
308
,
2011
. doi: .
20.
L. R.
Schimleck
,
R.
Evans
, and
J.
Ilic
, “
Estimation of Eucalyptus delegatensis wood properties by near infrared spectroscopy
,”
Can. J. For. Res.
, vol.
31
, no.
10
, pp.
1671
1675
,
2001
, doi: .
21.
N.
Gierlinger
,
M.
Schwanninger
, and
R.
Wimmer
, “
Characteristics and classification of Fourier-transform near infrared spectra of the heartwood of different larch species (Larix sp
.),”
J. Near Infrared Spectrosc.
, vol.
12
, no.
2
, pp.
113
119
,
2004
, doi: .
22.
X.
Jin
et al, “
Determination of hemicellulose, cellulose and lignin content using visible and near infrared spectroscopy in Miscanthus sinensis
,”
Bioresour. Technol.
, vol.
241
, pp.
603
609
,
2017
, doi: .
23.
S.
Ayanleye
and
S.
Avramidis
, “
Predictive capacity of some wood properties by near-infrared spectroscopy
,”
Int. Wood Prod. J.
, vol.
12
, no.
2
, pp.
83
94
,
2021
, doi: .
24.
L. R.
Schimleck
,
J. L. M.
Matos
,
R.
Trianoski
, and
J. G.
Prata
, “
Comparison of methods for estimating mechanical properties of wood by NIR spectroscopy
,”
J. Spectrosc.
, vol.
2018
,
2018
, doi: .
25.
L.
Yu
,
Y.
Liang
,
Y.
Zhang
, and
J.
Cao
, “
Mechanical properties of wood materials using near-infrared spectroscopy based on correlation local embedding and partial least-squares
,”
J. For. Res.
, vol.
31
, no.
3
, pp.
1053
1060
,
2020
, doi: .
26.
T. F.
Yeh
,
T.
Yamada
,
E.
Capanema
,
H. M.
Chang
,
V.
Chiang
, and
J. F.
Kadla
, “
Rapid screening of wood chemical component variations using transmittance near-infrared spectroscopy
,”
J. Agric. Food Chem.
, vol.
53
, no.
9
, pp.
3328
3332
,
2005
, doi: .
27.
M. N.
Gebreselassie
et al, “
Near-infrared spectroscopy enables the genetic analysis of chemical properties in a large set of wood samples from Populus nigra (L.) natural populations
,”
Ind. Crops Prod.
, vol.
107
, pp.
159
171
,
2017
, doi: .
This content is only available via PDF.
You do not currently have access to this content.