Measuring the rate of biofilm formation remains a significant challenge for researchers and specialists. Apart from the requirement for expensive equipment, the difficulty lies in striking a balance between accuracy and representability, as increased accuracy often sacrifices representability and vice versa. This challenge has spurred the need to develop an affordable, precise, and readily available method for measuring this property. One of the most effective techniques for biofilm rate measurement involves photometry, which relies on the reduction of light penetration as biofilm thickens. Recently, RWTH Aachen University in Germany introduced an open-source application that encompasses various physical measurements, including a light meter known as Phyphox, designed for educational and experimental purposes. This study investigates the feasibility of employing such technology for biofilm measurement and provides details about the relevant hardware. The results demonstrate the promising potential of utilizing smart device light meters to quantify biofilm formation rates. The findings indicate an inverse relationship between penetrating light and biofilm thickness. Consequently, we now have an affordable, readily available, and precise method for quantifying biofilm.

1.
Paramonova
E
,
de Jong
,
E. D.
,
Krom
BP
,
van der Mei
HC
,
Busscher
HJ
,
Sharma
PK
. “
Low-load compression testing: a novel way of measuring biofilm thickness
”.
Appl Environ Microbiol.
2007
;
73
(
21
):
7023
8
.
2.
Jiang
M
,
Nakano
S-i.
Application of image analysis for algal biomass quantification: a low-cost and non- destructive method based on HSI color space
”.
Journal of Applied Phycology.
2021
;
33
(
6
):
3709
17
.
3.
Relucenti
M
,
Familiari
G
,
Donfrancesco
O
,
Taurino
M
,
Li
X
,
Chen
R
, et al “
Microscopy Methods for Biofilm Imaging: Focus on SEM and VP-SEM Pros and Cons
”.
Biology.
2021
;
10
(
1
):
51
.
4.
Battin
TJ
,
Kaplan
LA
,
Newbold
JD
,
Cheng
X
,
Hansen
C.
Effects of current velocity on the nascent architecture of stream microbial biofilms
”.
Appl Environ Microbiol.
2003
;
69
(
9
):
5443
52
.
5.
Jackson
BD
,
Connolly
JM
,
Gerlach
R
,
Klapper
I
,
Parker
AE
. “
Bayesian estimation and uncertainty quantification in models of urea hydrolysis by E. coli biofilms
”.
Inverse Problems in Science and Engineering.
2021
;
29
(
11
):
1629
52
.
6.
Heydorn
A
,
Nielsen
AT
,
Hentzer
M
,
Sternberg
C
,
Givskov
M
,
Ersboll
BK
, et al “
Quantification of biofilm structures by the novel computer program COMSTAT
”.
Microbiology.
2000
;
146
(Pt 10):
2395
407
.
7.
Milferstedt
K
,
Pons
MN
,
Morgenroth
E.
Optical method for long-term and large-scale monitoring of spatial biofilm development
”.
Biotechnol Bioeng.
2006
;
94
(
4
):
773
82
.
8.
Pereira
TC
,
Dijkstra
RJB
,
Petridis
X
,
Sharma
PK
,
van de Meer
WJ
,
van der Sluis
LWM
, et al “
Chemical and mechanical influence of root canal irrigation on biofilm removal from lateral morphological features of simulated root canals, dentine discs and dentinal tubules
”.
International Endodontic Journal.
2021
;
54
(
1
):
112
29
.
9.
Okkerse
WJ
,
Ottengraf
SP
,
Osinga-Kuipers
B.
Biofilm thickness variability investigated with a laser triangulation sensor
”.
Biotechnol Bioeng.
2000
;
70
(
6
):
619
29
.
10.
Vroom
JM
,
De Grauw
KJ
,
Gerritsen
HC
,
Bradshaw
DJ
,
Marsh
PD
,
Watson
GK
, et al “
Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy
”.
Appl Environ Microbiol.
1999
;
65
(
8
):
3502
11
.
11.
Hollmann
B
,
Perkins
M
,
Chauhan
VM
,
Aylott
JW
,
Hardie
KR
. “
Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation
”.
npj Biofilms and Microbiomes.
2021
;
7
(
1
):
50
.
12.
Desmond
P
,
Huisman
KT
,
Sanawar
H
,
Farhat
NM
,
Traber
J
,
Fridjonsson
EO
, et al “
Controlling the hydraulic resistance of membrane biofilms by engineering biofilm physical structure
”.
Water Research.
2022
;
210
:
118031
.
13.
Mas
XMn-BFJMnNVeJ
. “
On-chip impedance measurements to monitor biofilm formation in the drinking water distribution network
”.
ScienceDirect.
2006
;
118
:
129
34
14.
Molderez
TR
,
Prévoteau
A
,
Ceyssens
F
,
Verhelst
M
,
Rabaey
K.
A chip-based 128-channel potentiostat for high- throughput studies of bioelectrochemical systems: Optimal electrode potentials for anodic biofilms
”.
Biosensors and Bioelectronics.
2021
;
174
:
112813
.
15.
Sarah M. Strycharz-Glaven
RMS
,
Anthony
Guiseppi-Elie
and
Leonard M.
Tender
. “
On the electrical conductivity of microbial nanowires and biofilms
”.
Energy and Environmental Science
2011
;
4
:
4366
79
.
16.
Ye
Y
,
Liu
X
,
Nealson
KH
,
Rensing
C
,
Qin
S
,
Zhou
S
, et al “
Dissecting the Structural and Conductive Functions of Nanowires in Geobacter sulfurreducens Electroactive Biofilms
”.
mBio.
2022
;
13
(
1
):
e03822
21
.
17.
Lewandowsky
Z
,
Beyenal
H.
Foundamentals of Biofilm Research
:
CRC Press
;
2007
.
18.
Saccomano
SC
,
Jewell
MP
,
Cash
KJ
. “
A review of chemosensors and biosensors for monitoring biofilm dynamics
”.
Sensors and Actuators Reports.
2021
;
3
:
100043
.
19.
Corte
L
,
Casagrande
Pierantoni
D,
Tascini
C
,
Roscini
L
,
Cardinali
G.
Biofilm Specific Activity: A Measure to Quantify Microbial Biofilm
”.
Microorganisms.
2019
;
7
(
3
):
73
.
20.
Waller
SA
,
Packman
AI
,
Hausner
M.
Comparison of biofilm cell quantification methods for drinking water distribution systems
”.
J Microbiol Methods.
2018
;
144
:
8
21
.
21.
Peck
OPW
,
Chew
YMJ
,
Bird
MR
. “
On-line quantification of thickness and strength of single and mixed species biofilm grown under controlled laminar flow conditions
”.
Food and Bioproducts Processing.
2019
;
113
:
49
59
.
22.
Di Martino
P.
Extracellular polymeric substances, a key element in understanding biofilm phenotype
”.
AIMS Microbiol.
2018
;
4
(
2
):
274
88
.
23.
Goswami
SS
,
Behera
DK
. “
Evaluation of the best smartphone model in the market by integrating fuzzy-AHP and PROMETHEE decision-making approach
”.
DECISION.
2021
;
48
(
1
):
71
96
.
24.
El-Hajj
ZW
,
Newman
EB
. “
How much territory can a single E. coli cell control?
”.
Frontiers in Microbiology.
2015
;
6
.
25.
Reshes
G
,
Vanounou
S
,
Fishov
I
,
Feingold
M.
Cell shape dynamics in Escherichia coli
”.
Biophys J.
2008
;
94
(
1
):
251
64
.
26.
Flemming
H-C.
EPS—Then and Now
”.
Microorganisms.
2016
;
4
(
4
):
41
.
27.
Fischer
M
,
Triggs
GJ
,
Krauss
TF
. “
Optical Sensing of Microbial Life on Surfaces
”.
Appl Environ Microbiol.
2015
;
82
(
5
):
1362
71
.
28.
Caizán-Juanarena
L
,
Krug
JR
,
Vergeldt
FJ
,
Kleijn
JM
,
Velders
AH
,
Van As
H
, et al “
3D biofilm visualization and quantification on granular bioanodes with magnetic resonance imaging
”.
Water Research.
2019
;
167
:
115059
.
29.
Ostvar
S
,
Iltis
G
,
Davit
Y
,
Schlüter
S
,
Andersson
L
,
Wood
BD
, et al “
Investigating the influence of flow rate on biofilm growth in three dimensions using microimaging
”.
Advances in Water Resources.
2018
;
117
:
1
13
.
30.
Thomen
P
,
Robert
J
,
Monmeyran
A
,
Bitbol
A-F
,
Douarche
C
,
Henry
N.
Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing
”.
PloS one.
2017
;
12
(
4
):
e0175197
e
.
31.
Farshadzadeh
Z
,
Taheri
B
,
Rahimi
S
,
Shoja
S
,
Pourhajibagher
M
,
Haghighi
MA
, et al “
Growth Rate and Biofilm Formation Ability of Clinical and Laboratory-Evolved Colistin-Resistant Strains of Acinetobacter baumannii
”.
Frontiers in Microbiology.
2018
;
9
.
32.
Paula
AJ
,
Hwang
G
,
Koo
H.
Dynamics of bacterial population growth in biofilms resemble spatial and structural aspects of urbanization
”.
Nature Communications.
2020
;
11
(
1
):
1354
.
33.
Schiebel
J
,
Noack
J
,
Rödiger
S
,
Kammel
A
,
Menzel
F
,
Schwibbert
K
, et al “
Analysis of three-dimensional biofilms on different material surfaces
”.
Biomaterials Science.
2020
;
8
(
12
):
3500
10
.
This content is only available via PDF.
You do not currently have access to this content.