A successful data-driven approach has been adopted to predict the future Health Indicator (HI) and Remaining Useful Life (RUL) of the conveyor belt system, aiming to avoid potential problems and reduce the occurrence of future failures. It is necessary to record and analyze each operational profile of the conveyor system to achieve extrapolation using the data-driven model. By following the sensor’s signal at any point in the operation scenario, the RUL of the conveyor can be estimated. The regression algorithm, namely the polynomial curve fitting (PCF) model, was employed for HI and RUL prediction. Experimentally collected data from tests conducted on the conveyor belt were utilized to train the PCF model. The experimental results obtained from four categories, linear and nonlinear deceleration and linear and nonlinear acceleration deterioration, were reported and discussed. The effectiveness of the proposed PCF model in predicting HI was demonstrated using the appropriate performance metric (MAE). Additionally, the results revealed that the proposed predictive strategy provided a reliable estimation of the RUL.

1.
M. V.
Micea
,
L.
Ungurean
,
G. N.
Cârstoiu
, and
V.
Groza
, “
Online state-of-health assessment for battery management systems
,”
IEEE Trans. Instrum. Meas.
, vol.
60
, no.
6
, pp.
1997
2006
,
2011
, doi: .
2.
M. V.
Micea
,
L.
Ungurean
,
G. N.
Cârstoiu
, and
V.
Groza
, “
Online State-of-Health Assessment for Battery Management Systems
,”
IEEE Trans. Instrum. Meas.
, vol.
60
, no.
6
, pp.
1997
2006
, 2011.
3.
S.
Li
,
H.
Fang
, and
B.
Shi
, “
Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression
,”
Reliab. Eng. Syst. Saf.
, vol.
210
, no. January, p.
107542
,
2021
, doi: .
4.
X.
Su
,
S.
Wang
,
M.
Pecht
,
L.
Zhao
, and
Z.
Ye
, “
Interacting multiple model particle filter for prognostics of lithium-ion batteries
,”
Microelectron. Reliab.
, vol.
70
, pp.
59
69
,
2017
, doi: .
5.
K.
Medjaher
,
N.
Zerhouni
, and
J.
Baklouti
, “
Data-driven prognostics based on health indicator construction: Application to PRONOSTIA’s data
,”
2013 Eur. Control Conf. ECC 2013
, pp.
1451
1456
,
2013
, doi: .
6.
P.
Loukopoulos
et al., “
Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure
,”
Mech. Syst. Signal Process.
, vol.
121
, pp.
359
372
,
2019
, doi: .
7.
K. H.
Tseng
,
J. W.
Liang
,
W.
Chang
, and
S. C.
Huang
, “
Regression models using fully discharged voltage and internal resistance for state of health estimation of lithium-ion batteries
,”
Energies
, vol.
8
, no.
4
, pp.
2889
2907
,
2015
, doi: .
8.
J.
Lu
,
L.
Wei
,
M. M.
Pour
,
Y.
Mekonnen
, and
A. I.
Sarwat
, “
Modeling discharge characteristics for predicting battery remaining life
,”
2017 IEEE Transp. Electrif. Conf. Expo, ITEC 2017
, pp.
468
473
,
2017
, doi: .
9.
D.
Chen
,
Y.
Qin
,
Y.
Wang
, and
J.
Zhou
, “
Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction
,”
ISA Trans.
, vol.
114
, no.
xxxx
, pp.
44
56
,
2021
, doi: .
10.
W.
Teng
,
X.
Zhang
,
Y.
Liu
,
A.
Kusiak
, and
Z.
Ma
, “
Prognosis of the remaining useful life of bearings in a wind turbine gearbox
,”
Energies
, vol.
10
, no.
1
, pp.
1
16
,
2017
, doi: .
11.
J.
Wu
,
Y.
Su
,
Y.
Cheng
,
X.
Shao
,
C.
Deng
, and
C.
Liu
, “
Multi-sensor information fusion for remaining useful life prediction of machining tools by adaptive network based fuzzy inference system
,”
Appl. Soft Comput. J.
, vol.
68
, pp.
13
23
,
2018
, doi: .
12.
F.
Elasha
,
S.
Shanbr
,
X.
Li
, and
D.
Mba
, “
Prognosis of a wind turbine gearbox bearing using supervised machine learning
,”
Sensors (Switzerland)
, vol.
19
, no.
14
, pp.
1
17
,
2019
, doi: .
13.
A. A. G.
AL-KHAFAJI
, “
HEALTH MONITORING OF FEEDBACK CONTROLLED MECHATRONIC SYSTEMS Thesis
,”
Cardiff University
,
2017
.
14.
D.
Wang
,
K. L.
Tsui
, and
Q.
Miao
, “
Prognostics and Health Management: A Review of Vibration Based Bearing and Gear Health Indicators
,”
IEEE Access
, vol.
6
, pp.
665
676
,
2017
, doi: .
15.
J.-M. K. Wasim
Ahmad
,
Sheraz Ali
Khan
,
MM Manjurul
Islam
, “
A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models
,”
Reliab. Eng. Syst. Saf.
, vol.
184
, pp.
1
10
,
2019
, doi: .
16.
X.
Li
,
C.
Yuan
, and
Z.
Wang
, “
Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression
,”
J. Power Sources
, vol.
467
, no.
May
, p.
228358
,
2020
, doi: .
17.
M. M. Manjurul
Islam
,
A. E.
Prosvirin
, and
J. M.
Kim
, “
Data-driven prognostic scheme for rolling-element bearings using a new health index and variants of least-square support vector machines
,”
Mech. Syst. Signal Process.
, vol.
160
, no.
7
, p.
107853
,
2021
, doi: .
18.
F.
Window
, “
Polynomials, Curve Fitting, and Interpolation
,” [Online]. Available: https://uomustansiriyah.edu.iq/media/lectures/6/6_2020_05_02!10_51_42_AM.pdf
19.
D.
Garcia
, “
Robust smoothing of gridded data in one and higher dimensions with missing values
,”
Comput. Stat. Data Anal.
, vol.
54
, no.
4
, pp.
1167
1178
,
2010
, doi: .
20.
H.
Azami
,
K.
Mohammadi
, and
B.
Bozorgtabar
, “
An Improved Signal Segmentation Using Moving Average and Savitzky-Golay Filter
,”
J. Signal Inf. Process.
, vol.
03
, no.
01
, pp.
39
44
,
2012
, doi: .
21.
J. L.
Guiñón
,
E.
Ortega
,
J.
García-Antón
, and
V.
Pérez-herranz
, “
Moving Average and Savitzki-Golay Smoothing Filters Using Mathcad
,”
Int. Conf. Eng. Educ.
, no.
1
, pp.
1
4
,
2007
, [Online]. Available: http://academic.research.microsoft.com/Paper/12119855.aspx
22.
T.
Chai
and
R. R.
Draxler
, “
Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature
,”
Geosci. Model Dev.
, vol.
7
, no.
3
, pp.
1247
1250
,
2014
, doi: .
23.
A. N.
Hanoon
,
M. S.
Jaafar
,
F.
Hejazi
, and
F. N. A. Abdul
Aziz
, “
Energy absorption evaluation of reinforced concrete beams under various loading rates based on particle swarm optimization technique
,”
Eng. Optim.
, vol.
49
, no.
9
, pp.
1483
1501
,
2017
, doi: .
24.
L.
Zhang
,
Z.
Mu
, and
C.
Sun
, “
Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Exponential Model and Particle Filter
,”
IEEE Access
, vol.
6
, pp.
17729
17740
,
2018
, doi: .
This content is only available via PDF.
You do not currently have access to this content.