Molecular imprinting is a promising technique recently used to detect trace contaminants in aqueous solutions. The technique depends on the reaction between the target molecules (testosterone) and the functional monomer to form a complex in a suitable solvent. Then the complex is polymerized in the presence of a crosslinker. This technique is used to study the affinity of eleven Endocrine-Disrupting Chemicals (EDC) to the testosterone sensor. The relation between the classification of chemicals depends on Relative Binding Affinity (RBA), which was calculated from other sources, to the classification obtained from the sensor was compared to investigate any relationship between them. Based on the results of the study, the chemicals were classified into four categories, according to their response at three different concentrations (1, 5, 10 ppb): strong affinity to the sensor (T), moderate affinity (23 chemicals mix, DEP, CHL, VIN, EST, DDE, and DCP), weak affinity (BPA, FLU, and ALD), and inactive (DDT). Also, the percent activity showed that the selected chemicals had lower adsorption to the binding site of the sensor in comparison with testosterone. The results showed that 60% of the classification was identical to the Fang classification, which means that the sensor can be used as a pre-method to study the affinity of EDCs binding to the androgen receptor (AR).

1.
F.
Wang
,
W.
Sun
,
W.
Pan
, and
N.
Xu
,
Chem. Eng. J.
274
,
17
29
(
2015
).
2.
N. A. H.
Ismail
,
S. Y.
Wee
, and
A. Z.
Aris
,
Chemosphere
188
,
375
388
(
2017
).
3.
C. D.
Kassotis
,
D. E.
Tillitt
,
J. W.
Davis
, et al.,
Endocrinology
155
,
897
907
(
2014
).
4.
National Institute of Environmental Health Science
, “
Endocrine Disruptors
.” [Online]. Available: https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm.
5.
H. S.
Chang
,
K. H.
Choo
,
B.
Lee
, et al.,
J. Hazard. Mater.
172
,
1
12
(
2009
).
6.
N. H.
Tran
,
J.
Hu
, and
S. L.
Ong
,
Talanta
113
,
82
92
(
2013
).
7.
T. F. T.
Omar
,
A. Z.
Aris
,
F. M.
Yusoff
, et al.,
Talanta
173
,
51
59
(
2017
).
8.
R.
Ben Sghaier
et al.,
Int. J. Environ. Res.
11
,
613
624
(
2017
).
9.
W.
Guo
,
K.
Van Langenhove
,
T.
Vandermarken
, et. al.,
Environ. Int.
,
127
,
13
20
,
2019
.
10.
W.
Guo
,
K.
Van Langenhove
,
T.
Vandermarken
, et al.,
Environ. Int.
127
,
13
20
(
2019
).
11.
T. M.
Edwards
,
H. E.
Morgan
,
C.
Balasca
, et. al.,
J. Vis. Exp.131
,
1
11
,
2018
.
12.
X.
Lv
,
H.
Huang
,
D.
Liu
, et al,
J. Agric. Food Chem.
,
67
,
9390
9398
(
2019
).
13.
A. J.
Kadhem
,
S.
Xiang
,
S.
Nagel
, et. al.,
Polymers
,
10
,
1
13
(
2018
).
14.
A. J.
Kadhem
,
G. J.
Gentile
, and
M. M. F.
de Cortalezzi
,
Molecules
,
26
,
1
34
(
2021
).
15.
G. A. M.
Kahl
,
J.
Cavallin
,
E.
Durhan
, et. al.,
U.S. Environ. Prot. Agency, Mid-Continent Ecol. Div. Duluth MN
,
869
876
(
2011
).
16.
C.
Teng
et al.,
Chem. Biol. Interact.
203
,
556
564
(
2013
).
17.
G. A. M.
Kahl
et al.,
U.S. Environ. Prot. Agency
,
869
876
(
2011
).
18.
D. L. S. and
D. P. S. Stephen A.
Martin
, Jr.,
Siobán D.
Harlow
,
Mary Fran
Sowers
, et al.,
Epidemiology
13
,
454
458
(
2002
).
19.
A.
Matsushima
,
Int. J. Mol. Sci.
,
19
,
1
14
(
2018
).
20.
J. E.
Monosson
,
W.R.
Kelce
,
Ch.
Lambright
, et.al.,
Toxicol. Ind. Health
,
15
,
1
21
(999).
21.
G.
Viswanath
et al.,
J. Steroid Biochem. Mol. Biol.
120
,
22
29
(
2010
).
22.
US department of health and Human Services
, “
Drugs
,”
DICHLOROPHEN
, website,
1
3
(
2020
).
23.
ATSDR’s
Toxicol. Profiles
,
CRC press
, (
2002
).
24.
G. L.
Hostetler
,
R. A.
Ralston
, and
S. J.
Schwartz
,
Adv. Nutr.
8
,
423
435
(
2017
).
25.
M.
Singh
and
O.
Silakari
, in
Key book section
,
133
174
(
2018
).
26.
R.
Jayaraj
,
P.
Megha
, and
P.
Sreedev
,
Interdiscip. Toxicol.
9
,
90
100
(
2016
).
27.
L. A.
Boulé
et al.,
Toxicol. Sci.
163
,
639
654
(
2018
).
28.
H.
Fang
et al.,
Chem. Res. Toxicol.
16
,
1338
1358
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.