In this paper a novel image registration hyper spectral classification method based shape features and multi scale image segmentation is introduced. In this initially two images are taken one is image 1 and another one is reference image. Now to this input images multi scale segmentation is applied based on convex model. After applying segmentation the image is segmented into various parts. Now from the segmented part over ranged areas are removed. Image registration will be done based on the global spatial relation technique. Hyper spectral image is obtained and features are extracted. After features are extracted classification process is done, initially samples are trained and then classification is done by using PCA wavelet transform technique. By using C50 algorithm decision tree classification is applied. At last classified image is obtained with high accuracy and high quality of assessment. From experimental results it can observe that the accuracy, quality, precision, F1 score is increased and error rate is reduced.

1.
Sedghi
,
A.
,
Luo
,
J.
,
Mehrtash
,
A.
,
Pieper
,
S.
,
Tempany
,
C.M.
,
Kapur
,
T.
,
Mousavi
,
P.
,
Wells
,
W.M.
:
Semi-supervised image registration using deep learning
.
In: Proc SPIE Int Soc Opt Eng.
vol.
10951
, p.
109511G
(
2019
)
2.
de Vos
,
B.
,
Berendsen
,
F.
,
Viergever
,
M.
,
Sokooti
,
H.
,
Staring
,
M.
,
Isgum
,
I.
:
A deep learning framework for unsupervised affine and deformable image registration
.
Medical Image Analysis
pp.
128
143
(
2019
)
3.
Fan
,
J.
,
Cao
,
X.
,
Yap
,
P.
,
Shen
,
D.
:
Birnet: brain image registration using dualsupervised fully convolutional networks
.
Medical Image Analysis
pp.
128
143
(
2019
)
4.
Wang
,
J.
,
Wells
,
W.
,
Golland
,
P.
,
Zhang
,
M.
:
Efficient laplace approximation for bayesian registration uncertainty quantification
.
In: MICCAI.
pp.
880
888
(
2018
)
5.
Sokooti
,
H.
,
de Vos
,
B.
,
Berendsen
,
F.
,
Lelieveldt
,
B.
,
Isgum
,
I.
,
Staring
,
M.
:
Nonrigid image registration using multi-scale 3d convolutional neural networks
.
In: MICCAI.
pp.
232
239
(
2018
)
6.
Dalca
,
A.V.
,
Balakrishnan
,
G.
,
Guttag
,
J.
,
Sabuncu
,
M.R.
:
Unsupervised learning for fast probabilistic diffeomorphic registration
.
In: MICCAI.
pp.
729
738
(
2018
)
7.
Balakrishnan
,
G.
,
Zhao
,
A.
,
Sabuncu
,
M.R.
,
Guttag
,
J.
,
Dalca
,
A.V.
:
An unsupervised learning model for deformable medical image registration
.
In: Proceedings of the IEEE CVPR.
pp.
9252
9260
(
2018
)
8.
Rohe
,
M.
,
Datar
,
M.
,
Heimann
,
T.
,
Sermesant
,
M.
,
Pennec
,
X.
:
Svf-net:learning deformable image registration using shape matching
.
In: MICCAI.
pp.
266
274
(
2018
)
9.
Yang
,
X.
,
Kwitt
,
R.
,
Styner
,
M.
,
Niethammer
,
M.
:
Quicksilver: Fast predictive image registration–a deep learning approach
.
NeuroImage
158
,
378
396
(
2017
)
10.
Cao
,
X.
,
Yang
,
J.
,
Zhang
,
J.
,
Nie
,
D.
,
Kim
,
M.
,
Wang
,
Q.
,
Shen
,
D.
:
Deformable image registration based on similarity-steered cnn regression
.
In: MICCAI.
pp.
300
308
(
2017
)
11.
Le Folgoc
,
L.
,
Delingette
,
H.
,
Criminisi
,
A.
,
Ayache
,
N.
:
Quantifying registration uncertainty with sparse bayesian modelling
.
IEEE TMI
36
(
2
),
607
617
(
2016
)
12.
Heinrich
,
M.
,
Simpson
,
I.
,
Papiėz
,
B.
,
Brady
,
M.
,
Schnabel
,
J.
:
Deformable image registration by combining uncertainty estimates from supervoxel belief propagation
.
Medical Image Analysis
pp.
57
71
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.