The main goal of this investigation is to enhance the precision of crop forecasting by transitioning from the Adaboost method to Naive Bayes analysis. The current inadequacy in food production and forecasting is attributed to anthropogenic climate change, resulting in low supply. This has significant adverse effects on farmers’ economic conditions due to poor yield and the challenges associated with predicting future crops. This research initiative aims to assist novice farmers by leveraging machine learning to recommend suitable crops. The approach involves aggregating information on crop seeds along with specific requirements for optimal growth, encompassing nitrogen and phosphorus levels, temperature, humidity, pH, and rainfall. Statistical analysis, employing a t-test for independent samples with a significance level of 0.001 (p<0.05), G-power of 0.8, mean, and standard deviation, was conducted on data collected from diverse sources. In this experiment, a total of 20 samples were gathered and divided into two groups of 10 each. Group 1 utilized the Innovative Naive Bayes technique, while Group 2 employed the Adaboost methodology. The data analysis revealed that the Naïve Bayes Algorithm exhibited high accuracy (99.39%) compared to the Adaboost algorithm (79.45%) with a significance level of the independent sample t-test at 0.001 (p<0.05). This suggests that the Gaussian Naive Bayes algorithm is more accurate in predicting crop outcomes than the Adaboost algorithm. Key terms associated with this study include Crop Prediction, Crops, Adaboost Algorithm, Innovative Naive Bayes Algorithm, Machine Learning, Crop Yield Forecasting, and Maize.

2.
L.-P.
Chu
,
J.-C.
Wang
, and
J.-F.
Wang
, “
VLSI Architecture Design for Concatenative Speech Synthesizer
,” in
TENCON 2005 - 2005 IEEE Region 10 Conference
, pp. (
2005
).
4.
A. U.
Mohamed
and
A. C. H.
Cheong
, "
Automated color sorting for material handling system
," in
AIP Conference Proceedings
2788
, (AIP Publishing,
2023
)
5.
A. A. A.
Ahmed
and
A. C. H.
Cheong
, "
Design and develop spiral conveyor for flexible manufacturing system (FMS
)," in
AIP Conference Proceedings
2788
, (AIP Publishing,
2023
)
6.
S.
Sivakumar
,
C. H. C.
Alexander
,
H. L.
Teow
,
M. Y.
Ali
, and
S.
Ramesh
, "
Two-Stage Sintering of Zirconia Toughened Alumina Composite (ZTA) Doped with Copper Oxide
," in
Proceeding of 5th International Conference on Advances in Manufacturing and Materials Engineering: ICAMME 2022, (Springer Nature Singapore
,
2023
), pp.
661
667
.
7.
S.
Sivakumar
,
C. H. C.
Alexander
,
H. L.
Teow
,
M. Y.
Ali
, and
S.
Ramesh
, "
Effect of Zirconia Doping on the Sintering and Mechanical Properties of Hydroxyapatite Bioceramic
," in
Proceeding of 5th International Conference on Advances in Manufacturing and Materials Engineering: ICAMME 2022
, (
Springer Nature Singapore
,
2023
), pp.
147
153
.
8.
A. Y. A.
Yusofe
,
H. C.
Chee
,
S.
Ramesh
,
M. Y.
Ali
, and
Z.
Ibrahim
, "
Design and engineering analysis of a coconut peeler machine
," in
AIP Conference Proceedings
2643
, (AIP Publishing,
2023
)
9.
M. I. B.
Jama
,
H. C.
Chee
,
S.
Ramesh
,
S. R.
Ya’akub
,
Z.
Ibrahim
, and
M. Y.
Ali
, "
Engineering analysis of an upright wheel assembly for passenger vehicle
," in
AIP Conference Proceedings
2643
, (AIP Publishing,
2023
)
10.
A. C. H.
Cheong
,
K. F.
Jie
,
J. I. Y. Y.
Xian
,
Z.
Ibrahim
, and
S.
Ramesh
, "
Digital twin in manufacturing by using programmable logic controller (PLC
)," in
AIP Conference Proceedings
2643
, (AIP Publishing,
2023
)
11.
A. C.H.
Chee
and
S.
Sivanesan
,
J. Eng. Sci. Technol.
17
,
1
11
(
2022
).
12.
Wilson
,
A. C.H.
Cheong
and
S.
Sivanesan
,
J. Eng. Sci. Technol.
17
,
203
213
(
2022
).
13.
ACH
Cheong
,
International Journal of Advanced Science and Technology
29
(
1
),
111
128
(
2020
).
14.
S.
Namasivayam
,
M. H.
Fouladi
,
S.
Sivanesan
, and
S. Y. E.
Noum
,
Int. J. Eng. Educ.
36
,
1271
1279
(
2020
).
15.
B. N.
Matcha
,
S.
Sivanesan
,
K. C.
Ng
, and
S. Y. E.
Noum
,
Transp. Lett.
14
,
752
777
(
2022
).
16.
V.
Sekar
,
A.
Putra
,
S.
Palaniyappan
,
S. Y. E.
Noum
,
S.
Sivanesan
, and
Y. L.
Jiun
,
Wood Mater. Sci. Eng.
12
,
1
10
(
2023
).
17.
V.
Sekar
,
S.
Palaniyappan
,
S. Y. E.
Noum
,
A.
Putra
,
S.
Sivanesan
, and
D. D. C. V.
Sheng
,
Wood Res.
68
,
68
82
(
2023
).
18.
B. N.
Matcha
,
S. N.
Namasivayam
,
K. C.
Ng
,
S.
Sivanesan
, and
S. Y. E.
Noum
,
Adv. Transp. Stud.
55
(
2021
).
19.
I.
Guyon
,
S.
Gunn
,
M.
Nikravesh
, and
L. A.
Zadeh
,
Feature Extraction: Foundations and Applications
,
207
(Springer,
2008
).
20.
S. R.
Haneef
,
S. K.
Selvaperumal
, and
V.
Jayapal
,
Int. J. Electron. Telecommun.
65
,
557
563
(
2019
).
21.
S. K.
Selvaperumal
,
C.
Nataraj
,
V.
Thiruchelvam
, and
W. T. C.
Hung
,
Int. J. Appl. Eng. Res.
10
,
9611
9629
(
2016
).
22.
S.
Osman
,
A. H.
Shah
,
S.
Ali
,
S. K.
Selvaperumal
, and
V.
Thangasamy
,
Int. J. Simul.: Syst., Sci. Technol.
16
, No.
4
(
2015
).
23.
O. Z.
Salah
,
S. K.
Selvaperumal
, and
R.
Abdulla
,
Int. J. Electr. Comput. Eng.
12
, No.
4
(
2022
).
24.
R.
Mahesh
and
G.
Ramya
, “
Efficient utilization of water in smart irrigation system using bluetooth and IoT to increase the crop production
,” in
AIP Conference Proceedings
2822
, No.
1
(AIP Publishing,
2023
)
25.
L. S.
Satiro
, “
Crop prediction and soil response to sugarcane straw removal
,” Ph.D. thesis,
Universidade de São Paulo
,
2018
26.
T.
Senjyu
,
P. N.
Mahalle
,
T.
Perumal
, and
A.
Joshi
,
Information and Communication Technology for Intelligent Systems: Proceedings of ICTIS 2020.
1
(Springer Nature,
2020
).
27.
C. J.
Tucker
et al,
International Journal of Remote Sensing.
26
,
4485
98
(
2005
).
28.
P. J.
Pinter
,
R. D.
Jackson
,
S. B.
Idso
, and
R. J.
Reginato
,
International Journal of Remote Sensing.
2
,
43
48
(
1981
).
29.
United States. Congress. House. Committee on Agriculture
, “
Prohibit Crop Price Predictions by Government Officials Or Emplyees, Hearings Before …, on H.R. 7215 …
,” (
1928
).
30.
N.
Wang
et al,
Plants.
12
,
3
(
2023
).
32.
B.
Heitmann
et al,
International Journal of Remote Sensing.
17
,
3189
3200
(
2014
).
33.
S. B.
Idso
,
P. J.
Pinter
,
J. L.
Hatfield
,
R. D.
Jackson
, and
R. J.
Reginato
,
Journal of Theoretical Biology.
77
,
217
228
(
1979
).
34.
S.
Sivanesan
,
S. Y. E.
Noum
, and
S. N.
Namasivayam
, “
Enhancing Emotional Intelligence (EQ) to Embrace Teach Less, Learn More Initiatives
,” in
Preparing 21st Century Teachers for Teach Less, Learn More (TLLM) Pedagogies
, edited by IGI Global (
2020
), pp.
30
53
.
35.
S. Y. E.
Noum
,
S. K.
Sivanesan
,
M. P. L.
Tay
,
S. N.
Namasivayam
,
M. H.
Fouladi
, and
T. H.
Loong
, “
Integrating mobile learning into the foundation in engineering programme
,” in
2018 IEEE 10th International Conference on Engineering Education (ICEED)
,
IEEE
(
2018
), pp.
196
201
.
36.
D. T. K.
Tien
,
S.
Sivanesan
, and
S.
Ramesh
, “
A non-traditional approach to service-learning in engineering education
,” in
AIP Conference Proceedings
2643
, AIP Publishing (
2023
).
37.
C. V.
Aravind
,
S. K.
Sivanesan
, and
S.
Ramesh
, “
Reinforced learning experience framework
,” in
AIP Conference Proceedings
2643
, AIP Publishing LLC (
2023
), p.
050027
.
38.
A.
Soosai
,
S.
Sivanesan
,
S.
Muniandy
, and
T. H.
Loong
, “
Influence of Zirconia Content to the Mechanical Behaviour of Alumina Zirconia Composite Prepared via Colloidal Method
,” in
International Conference and Exhibition on Sustainable Energy and Advanced Materials
,
Springer Nature Singapore
(
2021
), pp.
124
132
.
39.
S.
Muniandy
,
A.
Soosai
,
T. H.
Loong
, and
S. K.
Sivanesan
, “
Effect of Sintering Temperature and Low Weight Percentage of Zirconia in Hydroxyapatite-Zirconia Composite on Mechanical Properties for Biomedical Application
,” in
International Conference and Exhibition on Sustainable Energy and Advanced Materials
,
Springer Nature Singapore
(
2021
), pp.
133
140
.
40.
T. H.
Loong
,
S.
Sivanesan
,
A.
Soosai
, and
S.
Muniandy
, “
Mechanical Properties and Microstructural Properties of Zirconia Toughened Alumina Composite (ZTA) Doped with Copper Oxide Prepared via Various Sintering Profiles of Two-Stage Sintering
,” in
International Conference and Exhibition on Sustainable Energy and Advanced Materials
,
Springer Nature Singapore
(
2021
), pp.
145
153
.
41.
V.
Sekar
,
S. E.
Noum
,
S.
Sivanesan
,
A.
Putra
,
D. H.
Kassim
,
Y. S.
Wong
, and
K. C.
Chin
, “
Effect of Perforation Volume on Acoustic Absorption of the 3D Printed Micro-Perforated Panels Made of Polylactic Acid Reinforced with Wood Fibers
,” in
Journal of Physics: Conference Series
2120
, IOP Publishing (
2021
), p.
012039
.
42.
B. N.
Matcha
,
S.
Sivanesan
,
K. C.
Ng
,
S. Y. E.
Noum
, and
A.
Sharma
,
Convergence of Big Data Technologies and Computational Intelligent Techniques
10
,
1
60
(
2023
).
43.
T. H.
Loong
,
S.
Sivanesan
, and
S. Y. E.
Noum
, “
The Effect of Sintering Profiles on Zirconia Toughened Alumina (ZTA) Prepared by Two-Stage Sintering
,” in
Key Engineering Materials
904
, edited by Trans Tech Publications Ltd (
2021
), pp.
174
180
.
44.
I.
Becker-Reshef
,
C.
Justice
,
M.
Sullivan
,
E.
Vermote
,
C.
Tucker
,
A.
Anyamba
, and
B.
Doorn
,
Remote Sensing
2
,
1589
1609
(
2010
)
45.
R. B.
MacDonald
and
F. G.
Hall
, “
Global crop forecasting
,”
Science.
208
,
670
679
(
1980
).
46.
S. M.
Babbar
,
C. Y.
Lau
, and
K. F.
Thang
, “
Long term solar power generation prediction using adaboost as a hybrid of linear and non-linear machine learning model
,”
International Journal of Advanced Computer Science and Applications
12
, (
2021
).
47.
S. M.
Babbar
and
L. C.
Yong
, “
Solar Power Prediction using Machine Learning Algorithms: A Comparative Study
,” in
2022 3rd International Conference on Smart Electronics and Communication (ICOSEC)
,
IEEE
(
2022
), pp.
1313
1319
.
48.
L. Jing
Shen
,
L. Chee
Yong
, and
L.
Jacqueline
,
Journal of Applied Technology and Innovation
5
,
75
82
(
2021
).
49.
T. Sze
Sien
,
L. Chee
Yong
, and
L. Nai
Shyan
,
Journal of Engineering Science and Technology.
3
,
172
184
(
2022
).
This content is only available via PDF.
You do not currently have access to this content.