The objective of this study is to enhance the detection accuracy of asthma disease in lungs by utilizing the Novel Gray level Fuzzy Neural Network (GFNN) with fuzzy rules, and to compare its performance with the Mamdani model Fuzzy Logic (FZ) algorithm. The study comprises two groups, with Group 1 employing the novel GFNN with fuzzy rules and Group 2 utilizing the Gray level Mamdani model Fuzzy Logic. Each group consists of 20 samples, determined using a pretest power of 80% and an error rate of 0.04, resulting in a total sample size of 40. The novel GFNN with fuzzy rules achieves a superior accuracy of 92.40% compared to the Mamdani model Fuzzy Logic, which achieves an accuracy of 90.30%. The obtained statistical significance value is 0.0213 (p<0.05), indicating a significant difference in performance between the two systems. Thus, the novel GFNN with fuzzy rules based feature extraction technique demonstrates superior accuracy in detecting asthma disease in lungs compared to the Mamdani model Fuzzy Logic based system.

1.
S.
Sahoo
,
S.
Bhattacharya
,
S.
Jana
, and
S.
Baitalik
,
Dalton Transactions
52
,
97
108
(
2022
).
2.
K.
Kalaivani
,
A. V.
Phamila
, and
S. K.
Selvaperumal
,
Int. J. Eng. Adv. Technol. (IJEAT)
9
, No.
1
(
2019
).
3.
O.
Castillo
and
P.
Melin
, New Perspectives on Hybrid Intelligent System Design Based on Fuzzy Logic,
Neural Networks and Metaheuristics
(
Springer Nature
,
2022
).
4.
S.
Subramanian
,
S. K.
Selvaperumal
,
V.
Jayapal
, and
R.
Abdulla
,
J. Adv. Res. Dynam. Control Syst.
11
,
12
-Special Issue,
667
673
(
2019
).
5.
Cheng
,
L. W.
,
Hii
,
M. L. H. A. Q.
,
Murali
,
R.
, &
Sooriamoorthy
,
D.
,
International Journal of Advanced Robotics and Unmanned Systems
,
1
(
2
), (
2022
).
6.
Parveen
,
S.
Shaik
, and
C.
Kavitha
,
International Journal of Computer Applications
95
, No.
25
(
2014
).
7.
S. K.
Salih
,
Iraqi Journal of Information Technology
8
(
4), (2018
).
8.
L.
Zhou
,
Q.
Xiao
,
M. F.
Taha
,
C.
Xu
, and
C.
Zhang
,
Plant Phenomics (Washington, D.C.
)
5
(
2023
).
9.
L.
Puyin
and
H.
Li
,
Fuzzy Neural Network Theory And Application
(
World Scientific
,
2004
).
10.
W.
Ji
and
X.
Qiu
,
Journal of Environmental and Public Health
2022
).
11.
M. J.
Zagumny
,
SPSS Book: Student Guide to the Statistical Package for the Social Sciences
(
iUniverse
,
2001
).
12.
S. S.
Priya
,
P. R.
Menon
,
M.
Vasanthi
, and
I. T.
Roopini
,
International Journal of Engineering And Computer Science
,
16453
16457
(
2016
).
13.
J. S. U.
Rahman
and
S. K.
Selvaperumal
,
Indones. J. Electr. Eng. Comput. Sci.
29
, No.
1
,
270
276
(
2023
).
14.
J. S. U.
Rahman
,
S. K.
Selvaperumal
, and
R.
Logeswaran
,
J. Adv. Res. Dynam. Control Syst.
12
,
03
-Special Issue, (
2020
).E. Mizrak and I. Oztekin, PsycEXTRA Dataset (2013).
15.
M.
Kalbande
and
P.
Bhavsar
, “
Performance Comparison of Deep Spiking CNN with Artificial Deep CNN for Image Classification Tasks
,” in
2022 IEEE Region 10 Symposium (TENSYMP),
(
2022
), pp.
1
6
.
16.
W.
Choi
,
N.
Dahiya
, and
S.
Nadeem
, “
CIRDataset: A Large-Scale Dataset for Clinically-Interpretable Lung Nodule Radiomics and Malignancy Prediction
,” in
Medical Image Computing and Computer-Assisted Intervention: MICCAI … International Conference on Medical Image Computing and Computer-Assisted Intervention
(
2022
), pp.
13
22
.
This content is only available via PDF.
You do not currently have access to this content.