This article’s main objectives are to recognize the sequence in the image, distinguish the object it is, and analyse it correctly. Using the nearest neighbor classifier and the novel random forest classifier, the input picture is used to predict the image recognition. The Kaggle database served as the source of the study dataset for this examination. larger accuracy was predicted for visual pattern analysis (with a sample size of 10 from G1 and 10 from G2) with a sample size of 20. The computation involved the use of a 95% poise interval, an alpha and beta value of 0.2 and 0.05, and a G-power of 0.8. With 91.54 percent exactness, the suggested novel RF outperforms the latter, which has an exactness pace of 85.33 percent. p = 0.001 (Independent Sample T Test p = 0.05) indicates the statistical significance of the difference between the two algorithms. Data analysis shows that for image pattern recognition, the novel random forest model that has been proposed performs better than the K nearest neighbor algorithm.

1.
L.
Shamir
,
J. D.
Delaney
,
N.
Orlov
,
D. M.
Eckley
, and
I. G.
Goldberg
,
PLoS Computational Biology.
6
),
e1000974
(
2010
).
2.
J. C.
Bezdek
,
L. O.
Hall
, and
L. P.
Clarke
,
Medical Physics.
20
(
4
),
1033
48
(
1993
).
3.
A. U.
Mohamed
and
A. C. H.
Cheong
, “
Automated color sorting for material handling system
,” in
AIP Conference Proceedings
2788
, (AIP Publishing,
2023
).
4.
M.
Wieland
and
M.
Pittore
,
Remote Sensing.
6
(
4
),
2912
39
(
2014
).
5.
S.
Pei
and
S.
Huang
,
Journal of the Optical Society of America. A, Optics, Image Science, and Vision.
34
(
1
),
18
26
(
2017
).
6.
H.
Akatsuka
and
S.
Imai
, “
Road Signposts Recognition System
,”
870239, SAE Technical Paper
(
1987
).
7.
Cheng
,
L. W.
,
Hii
,
M. L. H. A. Q.
,
Murali
,
R.
, &
Sooriamoorthy
,
D.
,
Int. J. Adv. Robotics Unmanned Syst.
1
(
2
) (
2022
).
8.
J.
Flusser
and
T.
Suk
,
Pattern Recognition.
26
(
1
),
167
74
(
1993
).
9.
O. Z.
Salah
,
S. K.
Selvaperumal
, and
R.
Abdulla
,
Int. J. Electr. Comput. Eng.
12
, No.
4
(
2022
).
10.
A.
Mustapha
,
S. K.
Selvaperumal
,
H.
Mohd
, and
R.
Lakshmanan
,
International Journal of Advanced Science and Technology
29
,
189
205
(
2020
).
11.
S. K.
Selvaperumal
,
A. S.
Balakrishnan
,
C.
Nataraj
, and
R.
Lakshmanan
, “
Haar wavelet transform based text extraction from complex videos
,” in the
IEEE 2nd International conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics
,
Chennai, India
, 27-28 February (
2016
).
12.
S.
Pei
and
S.
Huang
,
Journal of the Optical Society of America. A, Optics, Image Science, and Vision.
34
(
1
),
18
26
(
2017
).
13.
Sooriamoorthy
,
D.
,
Shanmugam
,
S. A.
, &
Juman
,
M. A.
,
Biomed. Signal Process. Control
68
,
102649
(
2021
).
14.
X.
Wan
,
H.
Song
,
L.
Luo
,
Z.
Li
,
G.
Sheng
, and
X.
Jiang
, “
Pattern Recognition of Partial Discharge Image Based on One-Dimensional Convolutional Neural Network
,” in
2018 Condition Monitoring and Diagnosis (CMD),
(
2018
), pp.
1
4
.
This content is only available via PDF.
You do not currently have access to this content.