The objective of this study is to develop an effective model for detecting extremist reviewer groups online, employing a Novel Bidirectional Encoder Revolutionary Transformer (BERT) in comparison to Stochastic Gradient Descent. Both algorithms are applied with a fixed number of iterations set to 20 for each group, aiming to enhance the accuracy of predicting the online reviewer system. The dataset used for evaluation is Amazon Review, responsible for determining the sentiment of product reviews (positive or negative). It encompasses reviews from various categories: books (2834 samples), DVDs (1199 samples), electronics (1883 samples), and kitchen and housewares (K). The performance evaluation metric is accuracy, with a desired statistical power (G power) of 0.8 and a confidence level of 95%. Statistical analysis reveals a significant difference between the two groups, with the Novel Bidirectional Encoder achieving an accuracy of 96.75%, outperforming Stochastic Gradient Descent, which attains 85.05% accuracy. This difference is statistically significant, with a significance value of 0.01 (p<0.05). Consequently, the accuracy percentage of the Novel Bidirectional Encoder Revolutionary Transformer surpasses that of Stochastic Gradient Descent.

1.
S.
Kariyawasam
and
R.
Weerasinghe
, “
A Unified Framework for Reviewer Reputation Estimation in Online Review Systems
”,
2015 IEEE 10th International Conference on Industrial and Information Systems (ICIIS)
, (
2015
), pp.
407
12
.
2.
A. de F.
Marcos
and
S. S.
Alves
, “
The Influence of Reviews on Purchase Intention
”,
2020 15th Iberian Conference on Information Systems and Technologies (CISTI)
, (
2020
), pp.
1
7
.
3.
H.
Al-Jarrah
,
M.
Al-Asa’d
,
S. A.
Al-Zboon
,
S. K.
Tawalbeh
,
M. M.
Hammad
, and
M.
AL-Smadi
, “
Resolving Conflict of Interests and Recommending Expert Reviewers for Academic Publications Using Linked Open Data
”,
2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS)
, (
2019
), pp.
91
98
.
4.
T.
Bai
,
W. X.
Zhao
,
Y.
He
,
J.
Nie
, and
J.
Wen
,
IEEE Transactions on Knowledge and Data Engineering
30
,
2271
84
(
2018
).
5.
C.
Cao
,
S.
Li
,
S.
Yu
, and
Z.
Chen
, “
Fake Reviewer Group Detection in Online Review Systems
,” in
2021 International Conference on Data Mining Workshops (ICDMW
), (
2021
), pp.
935
42
.
6.
M.
Okada
and
K.
Hashimoto
, “
Investigation of Preprocessing of Multilingual Online Reviews for Automatic Classification
”,
2012 IEEE/ACIS 11th International Conference on Computer and Information Science
, (
2012
), pp.
306
9
.
7.
A. K.
Suborna
,
S.
Saha
,
C.
Roy
,
S.
Sarkar
, and
M. T. H.
Siddique
, “
An Approach to Improve the Accuracy of Detecting Spam in Online Reviews
”,
2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD)
, (
2021
), pp.
296
99
.
8.
M.
Gaikwad
,
S.
Ahirrao
,
S.
Phansalkar
, and
K.
Kotecha
,
IEEE Access.
9
,
48364
404
(
2021
).
9.
N.
Hussain
,
H. T.
Mirza
,
A.
Ali
,
F.
Iqbal
,
I.
Hussain
, and
M.
Kaleem
,
PeerJ. Computer Science
7
,
e472
(
2021
).
10.
Leonard
,
B. V.
, &
Sooriamoorthy
,
D.
,
J. Phys.: Conf. Ser.
,
2523
(
1
),
012022
(
2023
, July).
11.
Z.
Trabelsi
,
F.
Saidi
,
E.
Thangaraj
, and
T.
Veni
, “
A Survey of Extremism Online Content Analysis and Prediction Techniques in Twitter Based on Sentiment Analysis
,”
Security Journal
(
2022
).
12.
V. U.
Gongane
,
M. V.
Munot
, and
A. D.
Anuse
, “
Detection and Moderation of Detrimental Content on Social Media Platforms: Current Status and Future Directions
,”
Social Network Analysis and Mining
12
,
129
(
2022
).
13.
S.
Aldera
,
A.
Emam
,
M.
Al-Qurishi
,
M.
Alrubaian
, and
A.
Alothaim
,
IEEE Access.
9
,
161613
26
(
2021
).
14.
C.
Nataraj
,
S.
Khan
,
F. F.
Eniola
, and
S. K.
Selvaperumal
, “
Design of simple DC-to-DC Wireless Power Transfer via inductive coupling
,” in
IEEE 3rd Int. Conf. Adv. Electr. Electron. Inf. Commun. Bio-Inform.
,
Chennai, India
, (
2017
).
15.
S.
Helif
,
R.
Abdulla
, and
S.
Kumar
, “
A Review of Energy Detection and Cyclostationary Sensing Techniques of Cognitive Radio Spectrum
,” in
IEEE Student Conf. Res. Dev. (SCOReD)
,
Kuala Lumpur
, (
2015
).
16.
S.
Choi
,
J.
Cha
,
L.
Kim
, and
Y.
Han
, “Reliability of Representative Reviewers on the Web,” in
2011 International Conference on Information Science and Applications
, (
2011
), pp.
1
5
.
17.
R.
Qasim
,
W. H.
Bangyal
,
M. A.
Alqarni
, and
A. A.
Almazroi
,
Journal of Healthcare Engineering
2022
(
2022
).
18.
F.
Saidi
,
Z.
Trabelsi
, and
E.
Thangaraj
, \
Engineering Applications of Artificial Intelligence
4
.
115
299
(
2022
).
This content is only available via PDF.
You do not currently have access to this content.