Diabetic retinopathy is a consequence of diabetes which is brought on by high blood sugar levels harming the retina. Patients with diabetic retinopathy start to notice fuzzy vision, color blindness, and variances in vision. Floating dots in vision, night vision deterioration, and dark regions in the visual field when diabetic retinopathy advances to more severe stages. If undetected and mistreated, it can lead to blindness. However, the progression takes years for diabetic retinopathy to endanger your vision. The earliest apparent symptoms of diabetic retinopathy are micro aneurysms, which manifest as tiny red spots on the retina. Other diabetic retinopathy symptoms include hemorrhages, which are red lesions brought on by the rupture of tiny blood vessels in the retina’s deeper layers. Exudates are another type of typical feature of diabetic retinopathy. These lesions are yellow-white and are brought on by plasma leakage from capillaries. Numerous physical examinations, including those for visual acuity, pupil dilation, and optical coherence tomography, can be performed to find diabetic retinopathy, but they take time as well as are costly, and have negative effects on the patients. This paper presents a novel image processing technique and algorithm for the enhancement of eye fundus images for the effective diagnosis of diabetic retinopathy. This paper also highlights the comparison between the effectiveness of different image processing techniques including negative transform, log transform, and contrast stretching techniques. It further compares the various contrast stretching methods including Contrast Limited Adaptive Histogram Equalization (CLAHE), Histogram Equalization (HE), and Adaptive histogram equalization (AHE). The paper concludes with the most effective image processing technique for the diagnosis of diabetic retinopathy that can help to treat the disease in its earlier stages.

1.
N.
Sneha
and
T.
Gangil
,
J. Big Data
6
,
1
19
(
2019
).
2.
S.
Padhi
,
A. K.
Nayak
, and
A.
Behera
,
Biomed. Pharmacother.
131
,
110708
(
2020
).
3.
Y. I. C.
Lee
,
N. A. I. S.
Lai
, and
A. C.H.
Chee
,
J. Eng. Sci. Technol.
Special Edition
,
77
106
(
2022
).
4.
A. U.
Mohamed
and
A. C. H.
Cheong
, “
Automated color sorting for material handling system
,” in
AIP Conference Proceedings
2788
, (AIP Publishing, 2023) .
6.
V. V.
Starovoitov
,
Y. I.
Golub
, and
M. M.
Lukashevich
,
Pattern Recognit. Image Anal.
32
,
322
331
(
2022
).
7.
J.
Pieczynski
,
P.
Kuklo
, and
A.
Grzybowski
,
Ophthalmol. Ther.
10
,
445
464
(
2021
).
8.
S.
Mamdouh
et al,
Egypt. Rheumatol.
42
,
213
218
(
2020
).
9.
C. M. G.
Cheung
et al,
Prog. Retin. Eye Res.
5.
101
113
(
2021
).
10.
R.
Zulfahmi
et al, “
Techniques for exudate detection for diabetic retinopathy
”, in
2019 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS)
, (
IEEE
,
2019
), pp.
1
6
.
11.
D. R.
Ningsih
,
Int. J. Image Graphics Signal Process.
10
,
30
(
2020
).
12.
B.
Yang
et al,
Pattern Recognit.
133
,
108968
(
2023
).
13.
K. G.
Dhal
et al,
Arch. Comput. Methods Eng.
28
,
1471
1496
(
2021
).
14.
T.
Kanwar
and
R.
Ahuja
, “
Histogram Equalization variants preserving non uniform illuminated images
”, in
2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)
, (
IEEE
,
2022
), pp.
1
6
.
15.
U.
Kuran
,
E. C.
Kuran
, and
M. B.
Er
, “
Parameter Selection of Contrast Limited Adaptive Histogram Equalization Using Multi-Objective Flower Pollination Algorithm
”, in
International Congress of Electrical and Computer Engineering
, (
Springer
,
Cham
,
2022
), pp.
1
6
.
16.
H.
Ben Yedder
,
B.
Cardoen
, and
G.
Hamarneh
,
Artif. Intell. Rev.
54
,
215
251
(
2021
).
18.
Y.
Chang
et al,
IEEE Access
6
,
11782
11792
(
2018
).
19.
P.
Musa
,
F. A.
Rafi
, and
M.
Lamsani
, in
2018 Third International Conference on Informatics and Computing (ICIC)
, (
IEEE
,
2018
), pp.
1
6
.
20.
S.
Sood
,
H.
Singh
, and
M.
Malarvel
, in
2021 5th International Conference on Computing Methodologies and Communication (ICCMC)
, (
IEEE
,
2021
), pp.
1
6
.
21.
M.
Veluchamy
and
B.
Subramani
,
Optik
183
,
329
337
(
2019
).
22.
M.
Chhabra
and
R.
Kumar
,
J. Comput. Theor. Nanosci.
17
,
2496
2507
(
2020
).
23.
A.
Weisser
and
J. M.
Buchholz
,
J. Acoust. Soc. Am.
145
,
349
360
(
2019
).
24.
U.
Dikkala
,
M. K.
Joseph
, and
M.
Alagirisamy
, in
2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)
,
Greater Noida
,
India
,
2021
, pp.
510
516
.
25.
D.
Sooriamoorthy
,
S. A.
Shanmugam
, and
M. A.
Juman
,
Biomed. Signal Process. Control
68
,
102649
(
2021
).
26.
A. C. H.
Cheong
,
K. F.
Jie
,
J. I. Y. Y.
Xian
,
Z.
Ibrahim
, and
S.
Ramesh
, “
Digital twin in manufacturing by using programmable logic controller (PLC
),” in
AIP Conference Proceedings
2643
, (AIP Publishing,
2023
) .
This content is only available via PDF.
You do not currently have access to this content.