This paper addresses the traditional manual process of finding the optimal proportion of raw materials in foundries to obtain a melted charge of required constituent element composition. This iterative process is time-consuming and prone to human error and cost inefficiency. To solve this problem, the paper proposes a computer application that automates and optimizes the selection and proportion of raw materials using Python programming language and related libraries. The proposed application employs Pulp and Pandas libraries to optimize raw material selection and proportion and read excel files, respectively, and Pysimple GUI for user interface. The paper reports that the proposed application has achieved the objective of reducing time and cost in a test conducted for calculating different element compositions. It has reduced the time and cost by 88 % and 13 % respectively. Overall, this study contributes to the automation and digitalization of foundry processes, improving efficiency and reducing the risk of human error and cost inefficiency.

1.
W. S.
Ebhota
,
A. S.
Karun
, and
F. L.
Inambao
,
International Journal of Materials Research
107
,
960
(
2016
).
2.
Ł.
Petrus
,
A.
Bulanowski
,
J.
Kołakowski
,
M.
Brzeżański
,
M.
Urbanowicz
,
J.
Sobieraj
,
G.
Matuszkiewicz
,
L.
Szwalbe
, and
K.
Janerka
,
Archives of Foundry Engineering
20
,
105
(
2020
).
3.
S.
Suman
,
R.
Singh
,
S.
Jha
, and
V.
Jha
,
International Journal of Technical Research
1
(
2012
).
4.
C.
Joshi
,
Foundry Review
5
,
10
(
2017
).
5.
E.
Ziółkowski
,
Archives of Metallurgy and Materials
,
487
(
2007
).
6.
E.
Ziółkowski
and
K.
Schmalenberg
,
Journal of Materials Engineering and Performance
28
,
4012
(
2019
).
7.
O.
Adetunji
and
S. O.
Seidu
,
Journal of Minerals and Materials Characterization and Engineering
8
,
277
(
2020
).
8.
S.
Seidu
,
O.
Adetunji
, and
S.
Olagunju
,
European Journal of Applied Engineering and Scientific Research
6
,
1
(
2018
).
9.
U. S.
Sakalli
and
B.
Birgoren
,
Computers & Industrial Engineering
56
,
724
(
2009
).
10.
V.
Sikka
,
D.
Wilkening
,
J.
Liebetrau
, and
B.
Mackey
,
Materials Science and Engineering: A
258
,
229
(
1998
).
11.
F. Djeumou
Fomeni
,
International Journal of Production Economics
205
,
179
(
2018
).
12.
J.
Ashayeri
,
A.
van Eijs
, and
P.
Nederstigt
,
European Journal of Operational Research
72
,
460
(
1994
).
13.
Sakalli
,
Baykoç
, and
B.
Birgoren
,
Annals of Operations Research
186
,
141
(
2011
).
14.
I.
Griva
,
S. G.
Nash
, and
A.
Sofer
,
Linear and nonlinear optimization
, Vol.
108
(Siam,
2009
).
15.
F. A.
Potra
and
S. J.
Wright
,
Journal of Computational and Applied Mathematics
124
,
281
(
2000
).
16.
J. L.
Gearhart
,
K. L.
Adair
,
J. D.
Durfee
,
K. A.
Jones
,
N.
Martin
, and
R. J.
Detry
, “
Comparison of open-source linear programming solvers
.”
Tech. Rep. Sandia National Lab. (SNL-NM)
, Albuquerque, NM (United States),
2013
).
17.
P.
Podrzaj
, in
Proceedings of the 8th International Conference on Informatics and Applications ICIA2019
(
2019
) pp.
1
6
.
This content is only available via PDF.
You do not currently have access to this content.