PVDF-co HFP blended PMMA complexed with Mg(CF3SO3)2 polymer electrolytes were synthesized using the solution casting process, zirconium nanofiller of 20 nm has been distributed with various concentrations. Utilising electronic Impedance Spectroscopy from 1Hz to 10MHz at various temperatures, the sample’s electrical properties are investigated. The dielectric permittivity values of real (ε’), imaginary (ε’’), electric modulus (M’ and M’’), and relaxation time are used to analyse the sample’s dielectric behaviour. The thermal behaviour of composite polymer electrolytes Disseminated with Zirconium nanofiller are changed tremendously. The ionic conduction of nano composite polymer electrolyte films has been improved by one order of magnitude by the addition of nano filler, and the extreme ionic conductivity (0.3434 x 10−3 Scm−1) is perceived for 8 wt % of ZrO2 dispersed in PVDF-co-HFP, PMMA & Mg(CF3SO3)2 polymer electrolyte system. The growth in conductivity is ascribed to an increase in disconnection of ions and conception of large number of conducting paths for ion mobility by the addition of nano sized ZrO2.

1.
Scrosati
,
B.
,
Hassoun
,
J.
, &
Sun
,
Y. K.
(
2011
).
Lithium-ion batteries. A look into the future
.
Energy & Environmental Science
,
4
(
9
),
3287
3295
.
2.
Korthauer
,
R.
(
2018
).
Areas of activity on the fringe of lithium-ion battery development, production, and recycling
.
Lithium-Ion Batteries: Basics and Applications
,
249
251
.
3.
Liu
,
B.
,
Zhang
,
J. G.
, &
Xu
,
W.
(
2018
).
Advancing lithium metal batteries
.
Joule
,
2
(
5
),
833
845
.
4.
Karmakar
,
A.
, &
Ghosh
,
A. J. C. A. P.
(
2012
).
Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes
.
Current Applied Physics
,
12
(
2
),
539
543
.
5.
Bucur
,
C. B.
,
Gregory
,
T.
,
Oliver
,
A. G.
, &
Muldoon
,
J.
(
2015
).
Confession of a magnesium battery
.
The journal of physical chemistry letters
,
6
(
18
),
3578
3591
.
6.
Yoo
,
H. D.
,
Shterenberg
,
I.
,
Gofer
,
Y.
,
Gershinsky
,
G.
,
Pour
,
N.
, &
Aurbach
,
D.
(
2013
).
Energy Environ
.
Sci
,
6
,
2265
2279
.
7.
Saha
,
P.
,
Datta
,
M. K.
,
Velikokhatnyi
,
O. I.
,
Manivannan
,
A.
,
Alman
,
D.
, &
Kumta
,
P. N.
(
2014
).
Rechargeable magnesium battery: Current status and key challenges for the future
.
Progress in Materials Science
,
66
,
1
86
.
8.
Gregory
,
T. D.
,
Hoffman
,
R. J.
, &
Winterton
,
R. C.
(
1990
).
Nonaqueous electrochemistry of magnesium: applications to energy storage
.
Journal of the Electrochemical Society
,
137
(
3
),
775
.
9.
Davidson
,
R.
,
Verma
,
A.
,
Santos
,
D.
,
Hao
,
F.
,
Fincher
,
C.
,
Xiang
,
S.
, … &
Banerjee
,
S.
(
2018
).
Formation of magnesium dendrites during electrodeposition
.
ACS Energy Letters
,
4
(
2
),
375
376
.
10.
Davidson
,
R.
,
Verma
,
A.
,
Santos
,
D.
,
Hao
,
F.
,
Fincher
,
C. D.
,
Zhao
,
D.
, … &
Banerjee
,
S.
(
2020
).
Mapping mechanisms and growth regimes of magnesium electrodeposition at high current densities
.
Materials Horizons
,
7
(
3
),
843
854
.
11.
Wang
,
X.
,
Hao
,
X.
,
Hengjing
,
Z.
,
Xia
,
X.
, &
Tu
,
J.
(
2020
).
3D ultraviolet polymerized electrolyte based on PEO modified PVDF-HFP electrospun membrane for high-performance lithium-sulfur batteries
.
Electrochimica Acta
,
329
,
135108
.
12.
Arya
,
A.
,
Sadiq
,
M.
, &
Sharma
,
A. L.
(
2018
).
Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites
.
Ionics
,
24
,
2295
2319
.
13.
Kundana
,
N.
,
Venkatapathy
,
M.
,
Neeraja
,
V.
,
Espenti
,
C. S.
, &
Reddy
,
V. M.
(
2022
).
Preparation and Characterization Of Solid Polymer Electrolyte Membranes Based On Pvdf-Co-Hfp Polymer And MgTF3 As A Dopant.
14.
Panda
,
D.
, &
Tseng
,
T. Y.
(
2013
).
Growth, dielectric properties, and memory device applications of ZrO2 thin films
.
Thin Solid Films
,
531
,
1
20
.
15.
Sundaram
,
N. K.
,
Vasudevan
,
T.
, &
Subramania
,
A.
(
2007
).
Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles
.
Journal of Physics and Chemistry of Solids
,
68
(
2
),
264
271
.
16.
Aravindan
,
V.
, &
Vickraman
,
P.
(
2007
).
Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE)
.
Journal of Physics D: Applied Physics
,
40
(
21
),
6754
.
17.
Yi
,
L.
,
Zou
,
C.
,
Chen
,
X.
,
Liu
,
J.
,
Cao
,
S.
,
Tao
,
X.
, … &
Wang
,
X.
(
2022
).
One-Step Synthesis of PVDF-HFP/PMMA-ZrO2 Gel Polymer Electrolyte to Boost the Performance of a Lithium Metal Battery
.
ACS Applied Energy Materials
,
5
(
6
),
7317
7327
.
18.
Kundana
,
N.
,
Venkatapathy
,
M.
,
Neeraja
,
V.
,
Espenti
,
C. S.
,
Reddy
,
V. M.
, &
Jeedi
,
V.
(
2022
).
Effect of PMMA on PVDF-co-HFP/MgTf3 Polymer Composite with Improved Ionic Conductivity, Thermal and Structural Properties
.
Oriental Journal of Chemistry
,
38
(
5
),
1138
.
19.
Wang
,
Z.
,
Miao
,
C.
,
Zhang
,
Y.
,
Fang
,
R.
,
Yan
,
X.
,
Jiang
,
Y.
, … &
Xiao
,
W.
(
2018
).
Preparation of monodispersed ZrO2 nanoparticles and their applications in poly [(vinylidene fluoride)-co-hexafluoropropylene]-based composite polymer electrolytes
.
Polymer International
,
67
(
7
),
894
900
.
20.
Sudaryanto
,
Yulianti
, E., &
Patimatuzzohrah
. (
2016
, February).
Structure and properties of solid polymer electrolyte based on chitosan and ZrO2 nanoparticle for lithium ion battery
. In
AIP Conference Proceedings
(Vol.
1710
, No.
1
, p.
020003
). AIP Publishing LLC.
21.
Reddy
,
V. M.
,
Kundana
,
N.
, &
Sreekanth
,
T.
Investigation of XRD and Transport Properties of (PEO+ KNO3+ Nano Al2O3) Composite Polymer Electrolyte.
22.
Mallaiah
,
Y.
,
Jeedi
,
V. R.
,
Swarnalatha
,
R.
,
Raju
,
A.
,
Reddy
,
S. N.
, &
Chary
,
A. S.
(
2021
).
Impact of polymer blending on ionic conduction mechanism and dielectric properties of sodium based PEO-PVdF solid polymer electrolyte systems
.
Journal of Physics and Chemistry of Solids
,
155
,
110096
.
This content is only available via PDF.
You do not currently have access to this content.