An effective approach for implementing renewable energy is the integration of solar photovoltaic (PV) and building integrated photovoltaic (BIPV) systems. This is particularly true in a nation such as India, which has a substantial amount of solar energy capacity. This article offers a comprehensive assessment and examination of the barriers impeding the effective implementation of solar photovoltaic (PV) and battery integrated photovoltaic (BIPV) technologies in India. An analysis of the data reveals that these systems face substantial challenges, with a shortage of competent workforce being regarded as the most prominent hurdle in solar photovoltaic installations, awarded a severity rating of 5. Consequently, there is a significant shortage of qualified staff, thus requiring a twenty percent augmentation in skill enhancement initiatives to meet the demands of the industry. Both the substantial initial investment and the intermittent nature of the energy source, as well as the difficulty of integrating it into the power grid, provide considerable obstacles. These issues have been evaluated and assigned a severity grade of 4. To guarantee grid stability, it is essential to increase financial incentives by 25 percent and enhance energy storage technologies. The study emphasizes that the primary barrier for BIPV systems is the significant expense of materials, which is rated at a severity level of 5. This suggests that a significant reduction of 25% in material costs is required to promote market variety and enhance acceptance. Architectural Integration Constraints and Compliance with Building Standards are ranked at severity levels four. These two aspects emphasize the need of creating innovative designs and optimizing regulations to provide seamless integration within architectural norms. The comparison between solar photovoltaic (PV) and battery integrated photovoltaic (BIPV) addresses the distinctions between the two, emphasizing the specific areas for improvement. To address these challenges, the suggested measures include ensuring policy consistency, enhancing funding for research and innovation, and promoting cooperation among different stakeholders. Moreover, the findings emphasize the pressing requirement for comprehensive strategies to address skill deficiencies, reduce costs, and promote regulatory reforms in order to accelerate the implementation of solar photovoltaic and battery integrated photovoltaic systems. This would significantly facilitate India’s transition towards a sustainable energy system.

1.
Solar PV, BIPV - Search
|
ScienceDirect.Com
Available online: https://www.sciencedirect.com/search?qs=solar%20PV%2C%20BIPV (accessed on 2 December 2023).
2.
Kumar Singh
,
A.
,
Prasath Kumar
,
V.R.
,
Krishnaraj
,
L.
Emerging Technology Trends in the C&I Rooftop Solar Market in India: Case Study on Datacentre – Retrofit with BIPV by U-Solar
.
Solar Energy
2022
,
238
,
203
215
, doi:.
3.
Kishore
,
P.
,
Selvam
,
N.
,
Didwania
,
S.
,
Augenbroe
,
G.
Understanding BIPV Performance with Respect to WWR for Energy Efficient Buildings
.
Energy Reports
2022
,
8
,
1073
1083
, doi:.
4.
Restrepo
,
S.A.
,
Morcillo
,
J.
,
Castaneda
,
M.
,
Zapata
,
S.
,
Aristizábal
,
A.J.
Experimental Research on the Performance of a BIPV System Operating in Girardot, Colombia
.
Energy Reports
2023
,
9
,
194
204
, doi:.
5.
Martín-Chivelet
,
N.
,
Kapsis
,
K.
,
Wilson
,
H.R.
,
Delisle
,
V.
,
Yang
,
R.
,
Olivieri
,
L.
,
Polo
,
J.
,
Eisenlohr
,
J.
,
Roy
,
B.
,
Maturi
,
L.
, et al.
Building-Integrated Photovoltaic (BIPV) Products and Systems: A Review of Energy-Related Behavior
.
Energy Build
2022
,
262
, doi:.
6.
Boccalatte
,
A.
,
Fossa
,
M.
,
Ménézo
,
C.
Best Arrangement of BIPV Surfaces for Future NZEB Districts While Considering Urban Heat Island Effects and the Reduction of Reflected Radiation from Solar Façades
.
Renew Energy
2020
,
160
,
686
697
, doi:.
7.
Panicker
,
K.
,
Anand
,
P.
,
George
,
A.
Assessment of Building Energy Performance Integrated with Solar PV: Towards a Net Zero Energy Residential Campus in India
.
Energy Build
2023
,
281
, doi:.
8.
Ding
,
L.
,
Zhu
,
Y.
,
Zheng
,
L.
,
Dai
,
Q.
,
Zhang
,
Z.
What Is the Path of Photovoltaic Building (BIPV or BAPV) Promotion? –The Perspective of Evolutionary Games
.
Appl Energy
2023
,
340
, doi:.
9.
Abdelrazik
,
A.S.
,
Shboul
,
B.
,
Elwardany
,
M.
,
Zohny
,
R.N.
,
Osama
,
A.
The Recent Advancements in the Building Integrated Photovoltaic/Thermal (BIPV/T) Systems: An Updated Review
.
Renewable and Sustainable Energy Reviews
2022
,
170
, doi:.
10.
Rounis
,
E.D.
,
Athienitis
,
A.
,
Stathopoulos
,
T.
Review of Air-Based PV/T and BIPV/T Systems - Performance and Modelling
.
Renew Energy
2021
,
163
,
1729
1753
, doi:.
11.
Zomer
,
C.
,
Custódio
,
I.
,
Antoniolli
,
A.
,
Rüther
,
R.
Performance Assessment of Partially Shaded Building-Integrated Photovoltaic (BIPV) Systems in a Positive-Energy Solar Energy Laboratory Building: Architecture Perspectives
.
Solar Energy
2020
,
211
,
879
896
, doi:.
12.
Jhumka
,
H.
,
Yang
,
S.
,
Gorse
,
C.
,
Wilkinson
,
S.
,
Yang
,
R.
,
He
,
B.J.
,
Prasad
,
D.
,
Fiorito
,
F.
Assessing Heat Transfer Characteristics of Building Envelope Deployed BIPV and Resultant Building Energy Consumption in a Tropical Climate
.
Energy Build
2023
,
298
, doi:.
13.
Del Pero
,
C.
,
Aste
,
N.
,
Leonforte
,
F.
,
Sfolcini
,
F.
Long-Term Reliability of Photovoltaic c-Si Modules – A Detailed Assessment Based on the First Italian BIPV Project
.
Solar Energy
2023
,
264
, doi:.
14.
Yang
,
R.J.
,
Imalka
,
S.T.
,
Wijeratne
,
W.M.P.
,
Amarasinghe
,
G.
,
Weerasinghe
,
N.
,
Jayakumari
,
S.D.S.
,
Zhao
,
H.
,
Wang
,
Z.
,
Gunarathna
,
C.
,
Perrie
,
J.
, et al.
Digitalizing Building Integrated Photovoltaic (BIPV) Conceptual Design: A Framework and an Example Platform
.
Build Environ
2023
,
243
, doi:.
15.
Li
,
C.
,
Zhang
,
W.
,
Tan
,
J.
,
Liu
,
W.
,
Lyu
,
Y.
,
Tang
,
H.
Energy Performance of an Innovative Bifacial Photovoltaic Sunshade (BiPVS) under Hot Summer and Warm Winter Climate
.
Heliyon
2023
,
9
, doi:.
16.
Elhabodi
,
T.S.
,
Yang
,
S.
,
Parker
,
J.
,
Khattak
,
S.
,
He
,
B.J.
,
Attia
,
S.
A Review on BIPV-Induced Temperature Effects on Urban Heat Islands
.
Urban Clim
2023
,
50
, doi:.
17.
Chen
,
L.
,
Sun
,
Y.
,
Zhang
,
N.
,
Yang
,
J.
,
Wang
,
D.
Quantifying the Benefits of BIPV Windows in Urban Environment under Climate Change: A Comparison of Three Chinese Cities
.
Renew Energy
2023
,
119740
, doi:.
18.
Skandalos
,
N.
,
Wang
,
M.
,
Kapsalis
,
V.
,
D’Agostino
,
D.
,
Parker
,
D.
,
Bhuvad
,
S.S.
,
Udayraj
,
Peng
, J.,
Karamanis
,
D.
Building PV Integration According to Regional Climate Conditions: BIPV Regional Adaptability Extending Köppen-Geiger Climate Classification against Urban and Climate-Related Temperature Increases
.
Renewable and Sustainable Energy Reviews
2022
,
169
, doi:.
19.
Kaplanis
,
S.
,
Kaplani
,
E.
,
Kaldellis
,
J.K.
PV Temperature and Performance Prediction in Free-Standing, BIPV and BAPV Incorporating the Effect of Temperature and Inclination on the Heat Transfer Coefficients and the Impact of Wind, Efficiency and Ageing
.
Renew Energy
2022
,
181
,
235
249
, doi:.
20.
Liu
,
Z.
,
Zhang
,
Y.
,
Yuan
,
X.
,
Liu
,
Y.
,
Xu
,
J.
,
Zhang
,
S.
,
He
,
B.
jie A Comprehensive Study of Feasibility and Applicability of Building Integrated Photovoltaic (BIPV) Systems in Regions with High Solar Irradiance
.
J Clean Prod
2021
,
307
, doi:.
21.
Feroze
,
S.
,
Distler
,
A.
,
Forberich
,
K.
,
Ahmed Channa
,
I.
,
Doll
,
B.
,
Brabec
,
C.J.
,
Egelhaaf
,
H.J.
Comparative Analysis of Outdoor Energy Harvest of Organic and Silicon Solar Modules for Applications in BIPV Systems
.
Solar Energy
2023
,
263
, doi:.
22.
Satpathy
,
R.
,
Pamuru
,
V.
Rooftop and BIPV Solar PV Systems
.
Solar PV Power
2021
,
317
364
, doi:.
23.
Shukla
,
A.K.
,
Sudhakar
,
K.
,
Baredar
,
P.
,
Mamat
,
R.
Solar PV and BIPV System: Barrier, Challenges and Policy Recommendation in India
.
Renewable and Sustainable Energy Reviews
2018
,
82
,
3314
3322
, doi:.
24.
Mohammad
,
A.K.
,
Garrod
,
A.
,
Ghosh
,
A.
Do Building Integrated Photovoltaic (BIPV) Windows Propose a Promising Solution for the Transition toward Zero Energy Buildings? A Review
.
Journal of Building Engineering
2023
,
79
, doi:.
25.
Hamzah
,
A.H.
,
Go
,
Y.I.
Design and Assessment of Building Integrated PV (BIPV) System towards Net Zero Energy Building for Tropical Climate
.
e-Prime - Advances in Electrical Engineering, Electronics and Energy
2023
,
3
, doi:.
26.
Nicoletti
,
F.
,
Cucumo
,
M.A.
,
Arcuri
,
N.
Building-Integrated Photovoltaics (BIPV): A Mathematical Approach to Evaluate the Electrical Production of Solar PV Blinds
.
Energy
2023
,
263
, doi:.
27.
Saood
,
A.
,
Khan
,
A.H.
,
Equbal
,
M.I.
,
Saxena
,
K.K.
,
Prakash
,
C.
,
Vatin
,
N.I.
,
Dixit
,
S.
Influence of Fiber Angle on Steady-State Response of Laminated Composite Rectangular Plates
.
Materials
2022
,
15
, doi:.
28.
Subramaniam
,
S.
,
Raju
,
N.
,
Ganesan
,
A.
,
Rajavel
,
N.
,
Chenniappan
,
M.
,
Prakash
,
C.
,
Pramanik
,
A.
,
Basak
,
A.K.
,
Dixit
,
S.
Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review
.
Sustainability (Switzerland)
2022
,
14
, doi:.
29.
Agarwal
,
K.M.
,
Singh
,
P.
,
Dixit
,
S.
,
Sergeevna
,
M.T.
,
Soloveva
,
O. V.
,
Solovev
,
S.A.
,
Kumar
,
K.
Optimization of Die Design Parameters in ECAP for Sustainable Manufacturing Using Response Surface Methodology
.
International Journal on Interactive Design and Manufacturing
2023
, doi:.
30.
Mishra
,
L.
,
Dixit
,
S.
,
Nangia
,
R.
,
Saurabh
,
K.
,
Kumar
,
K.
,
Sharma
,
K.
A Brief Review on Segregation of Solid Wastes in Indian Region
.
Mater Today Proc
2022
,
69
,
419
424
, doi:.
31.
Dixit
,
S.
,
Singh
,
A.
,
Singh
,
J.
,
Kumar
,
R.
,
Vatin
,
N.I.
,
Kumar
,
K.
,
Miroshnikova
,
T.
,
Epifantsev
,
K.
,
Sinha
,
M.K.
Comparison of Theoretical and Experimental Physio-Mechanical Properties of Coal-Fly Ash (CFA) Reinforced Iron Matrix Composites
.
International Journal on Interactive Design and Manufacturing
2022
, doi:.
32.
Sharma
,
V.
,
Singh
,
S.
Modeling for the Use of Waste Materials (Bottom Ash and Fly Ash) in Soil Stabilization
.
Mater Today Proc
2020
,
33
,
1610
1614
, doi:.
33.
Ul Haq
,
M.Z.
,
Sood
,
H.
,
Kumar
,
R.
SEM-Assisted Mechanistic Study: PH-Driven Compressive Strength and Setting Time Behavior in Geopolymer Concrete
.
2023
.
34.
Kumar
,
K.
,
Dixit
,
S.
,
Ul Haq
,
M.Z.
,
Stefanska
,
A.
,
Tummala
,
S.K.
,
Bobba
,
P.B.
,
Kaur
,
N.
,
Mohiuddin
,
M.A.
From Homogeneity to Heterogeneity: Designing Functionally Graded Materials for Advanced Engineering Applications
.
In Proceedings of the E3S Web of Conferences; EDP Sciences
,
2023
; Vol.
430
, p.
01198
.
35.
Ul Haq
,
M.Z.
,
Sood
,
H.
,
Kumar
,
R.
,
Chaudhary
,
P.
,
Lavanya
,
C.
,
Dhaliwal
,
N.
,
Singarapu
,
S.
,
Kumar
,
K.
Waste Upcycling in Construction: Geopolymer Bricks at the Vanguard of Polymer Waste Renaissance
.
In Proceedings of the E3S Web of Conferences; EDP Sciences
,
2023
; Vol.
430
, p.
01205
.
36.
Ul Haq
,
M.Z.
,
Sood
,
H.
,
Kumar
,
R.
,
Sharma
,
V.
,
Kumar
,
A.
,
Srinivas
,
T.
,
Gulati
,
M.
,
Bindu
,
K.H.
,
Kumar
,
K.
Eco-Friendly Building Material Innovation: Geopolymer Bricks from Repurposed Plastic Waste
.
In Proceedings of the E3S Web of Conferences; EDP Sciences
,
2023
; Vol.
430
, p.
01201
.
This content is only available via PDF.
You do not currently have access to this content.