The latest research and theoretical studies have shown that malware is among the biggest dangers to our digital environment. The methods for removing malware have advanced in recent years to provide protection. In the past, a variety of traditional methods were employed to identify malware with different characteristics such as signatures, heuristics as well as other. Methods for detecting malware that were traditional in nature could not defeat the modern malware types as well as their advanced obfuscation strategies. Deep Learning outperforms other conventional techniques in malware type detection. Additionally, these techniques offer quick malware detection and have excellent rate of detection as well as the analysis of various malware types. The study of recently introduced Deep Learning-based malware prevention techniques and the evolution of their technology is relevant to this research. The study offers an in-depth review of recently created algorithms for detecting malware using DL. In addition, new malware types are studied, and detection strategies for malwares in Mobile (Android and iOS), Windows, IoT Advanced Persistent Threats (APTs) as well as Ransomware are thoroughly reviewed.

1.
Panda Labs Annual Report 2018
;
Panda Security
:
Chertsey, UK
,
2018
.
2.
FBI
.
Addressing Threats to the Nations Cybersecurity 1
. FBI Report, Retrieved 3 August 2022. (accessed on 10 August 2022).
3.
Manavi
,
F.
;
Hamzeh
,
A.
A novel approach for ransomware detection based on PE header using graph embedding
.
J. Comput.Virol. Hacking Tech.
2022
,
14
,
1
12
.
4.
Zahoora
,
U.
;
Rajarajan
,
M.
;
Pan
,
Z.
;
Khan
,
A.
Zero-day Ransomware Attack Detection using Deep Contractive Autoencoder and Voting based Ensemble Classifier
.
Appl. Intell.
2022
,
1
20
.
5.
Mohurle
,
S.
;
Patil
,
M.
A brief study of Wannacry Threat: Ransomware Attack 2017
.
Int. J. Adv. Res. Comput. Sci.
2017
,
8
,
1938
1940
.
6.
Maria Vergelis
,
T.S.
Spam and Phishing in Q2 2019
; SecureList by Kaspersky: Moscow, Russia,
2019
.
7.
ISTR Internet Security Threat Report
;
Symantec: Tempe, AZ, USA
,
24
,
2019
.
8.
Berman
,
D.S.
;
Buczak
,
A.L.
;
Chavis
,
J.S.
;
Corbett
,
C.L.
A survey of deep learning methods for cyber security
.
Information
2019
,
10
,
122. [CrossRef]
9.
Baezner
,
M.
;
Robin
,
P.
;
Wenger
,
A. Stuxnet
.
2017
.
Cyber Sovereignty, CSS Cyberdefense Reports
,
10.
Mo
,
Y.
;
Chabukswar
,
R.
;
Sinopoli
,
B.
Detecting integrity attacks on SCADA systems
.
IEEE Trans. Control Syst. Technol.
2014
,
22
,
1396
1407
.
11.
Marelli
,
D.
;
Sui
,
T.
;
Fu
,
M.
;
Lu
,
R.
Statistical Approach to Detection of Attacks for Stochastic Cyber-Physical Systems
.
IEEE Trans Autom. Contr
2021
,
66
,
849
856
.
12.
Sui
,
T.
;
Mo
,
Y.
;
Marelli
,
D.
;
Sun
,
X.
;
Fu
,
M.
The Vulnerability of Cyber-Physical System under Stealthy Attacks
.
IEEE Trans Autom. Contr
2021
,
66
,
637
650
.
13.
Aslan
,
O.
;
Samet
,
R.
A Comprehensive Review on Malware Detection Approaches
.
IEEE Access
2020
,
8
,
6249
6271
.
14.
Souri
,
A.
;
Hosseini
,
R.
A state-of-the-art survey of malware detection approaches using data mining techniques
.
Hum. Cent.Comput. Inf. Sci.
2018
,
8
,
3
.
15.
Ucci
,
D.
;
Aniello
,
L.
;
Baldoni
,
R.
Survey of machine learning techniques for malware analysis
.
Comput. Secur.
2019
,
81
,
123
147
.
16.
M.
Alazab
,
S.
Venkatraman
,
P.
Watters
,
M.
Alazab
,
A.
Alazab
,
Cybercrime: The case of obfuscated malware
, in:
C.K.
Georgiadis
,
H.
Jahankhani
,
E.
Pimenidis
,
R.
Bashroush
,
A.
Al-Nemrat
(Eds.),
Global Security, Safety andSustainability & e-Democracy, in: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
, vol.
99
,
Springer
,
Berlin, Germany
,
2012
.
17.
E.
Raff
,
J.
Sylvester
,
C.
Nicholas
,
Learning the PE header, malware detection with minimal domain knowledge
, in:
Proc. 10th ACMWorkshop Artif. Intell. Secur, ACM, New York, NY, USA
,
2017
, pp.
121
132
.
18.
C.
Rossow
, et al,
Prudent practices for designing malware experiments: Status quo and outlook
, in:
Proc. IEEE Symp. Secur. Privacy, SP
,
2012
, pp.
65
79
.
19.
H.S.
Anderson
,
A.
Kharkar
,
B.
Filar
,
P.
Roth
,
Evading Machine Learning Malware Detection
,
Black Hat, New York, NY, USA
,
2017
.
20.
R.
Verma
,
Security analytics: Adapting data science for security challenges
, in:
Proc. 4th ACM Int. Workshop Secur. Privacy Anal., ACM, New York, NY, USA
,
2018
, pp.
40
41
.
21.
Y.
LeCun
,
Y.
Bengio
,
G.
Hinton
,
Deep learning
,
Nature
521
(
7553
) (
2015
)
436
444
.
22.
Sudhakar
,
S. Kumar
,
An emerging threat fileless malware: a survey and research challenges
,
Cybersecur
3
(
2020
)
1
.
23.
Sibi
Chakkaravarthy
,
D.
Sangeetha
,
V.
Vaidehi
,
A survey on malware analysis and mitigation techniques
,
Comp. Sci. Rev.
32
(
2019
)
1
23
.
24.
Daniel
Gibert
,
Carles
Mateu
,
Jordi
Planes
,
The rise of machine learning for detection and classification of malware: Research developments, trends and challenges
,
J. Netw. Comput. Appl.
153
(
2020
)
102526
.
25.
N.
Koroniotis
,
N.
Moustafa
,
E.
Sitnikova
,
Forensics and deep learning mechanisms for botnets in internet of things: A survey of challenges and solutions
,
IEEE Access
7
(
2019
)
61764
61785
.
26.
Priyanka
Dixit
,
Sanjay Silakari, Deep learning algorithms for cybersecurity applications: A technological and status review, Comp. Sci. Rev.
(ISSN: 1574-0137)
39
(
2021
)
100317
.
27.
Sabbatel
,
G.B.
;
Korczynski
,
M.
;
Duda
,
A.
Architecture of a Platform for Malware Analysis and Confinement
. In
Proceedings of the Proceeding MCSS 2010: Multimedia Communications, Services and Security, Cracow, Poland
, 2–3 June
2011
.
28.
R.
Pascanu
,
J.W.
Stokes
,
H.
Sanossian
,
M.
Marinescu
,
A.
Thomas
,
Malware classification with recurrent networks
, in:
2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP
,
2015
, p.
1916e1920
.
29.
O.D. Gibert
Llaurad
,
Convolutional Neural Networks for Malware Classification
(Master’s thesis), Universitat Politfiecnica de Catalunya,
2016
.
30.
M.
Ahmadi
,
D.
Ulyanov
,
S.
Semenov
,
M.
Trofimov
,
G.
Giacinto
,
Novel feature extraction, selection and fusion for effective malware family classification
, in:
Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, Codaspy ’16, ACM, New York, NY, USA
,
2016
, p.
183e194
.
31.
Mao
,
W.
;
Cai
,
Z.
;
Towsley
,
D.
;
Guan
,
X.
Probabilistic inference on integrity for access behavior based malware detection. In
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
;
Springer
:
Cham, Switzerland
,
2015
; Volume
9404
.
32.
Piyanuntcharatsr
,
S.S.W.
;
Adulkasem
,
S.
;
Chantrapornchai
,
C.
On the comparison of malware detection methods using data mining with two feature sets
.
Int. J. Secur. Its Appl.
2015
,
9
,
293
318
.
Wüchner
,
T.
;
Ochoa
,
M.
;
Pretschner
,
A.
Robust and effective malware detection through quantitative data flow graph metrics
. In
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
;
Springer
:
Cham, Switzerland
,
2015
; Volume
9148
.
33.
Raff
,
E.
;
Nicholas
,
C.
An alternative to NCD for large sequences, lempel-ZiV jaccard distance
. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada
, 13–17 August
2017
; Volume
129685
.
34.
Khodamoradi
,
P.
;
Fazlali
,
M.
;
Mardukhi
,
F.
;
Nosrati
,
M.
Heuristic metamorphic malware detection based on statistics of assembly instructions using classification algorithms
. In
cProceedings of the 18th CSI International Symposium on Computer Architecture and Digital Systems, (CADS 2015), Tehran, Iran, 7–8 October 2015
.
35.
Upchurch
,
J.
;
Zhou
,
X.
Variant: A malware similarity testing framework
. In
cProceedings of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October 2015
.
36.
Liang
,
G.
;
Pang
,
J.
;
Dai
,
C.
A Behavior-Based Malware Variant Classification Technique
.
Int. J. Inf. Educ. Technol.
2016
,
6
,
291
.
37.
Vadrevu
,
P.
;
Perdisci
,
R.
MAXS: Scaling malware execution with sequential multi-hypothesis testing
. In
Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, Xi’an, China, 30 May–3 June 2016.
38.
Dahl
,
G.E.
;
Stokes
,
J.W.
;
Deng
,
L.
;
Yu
,
D.
Large-scale malware classification using random projections and neural networks
. In
Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada,26–31 May 2013.
39.
Ravi
,
V.
;
Alazab
,
M.
;
Selvaganapathy
,
S.
;
Chaganti
,
R.
A Multi-View attention-based deep learning framework for malware detection in smart healthcare systems
.
Comput. Commun.
2022
,
195
,
73
81
.
40.
Rama
,
K.
;
Kumar
,
P.
;
Bhasker
,
B.
Deep Learning to Address Candidate Generation and Cold Start Challenges in Recommender Systems: A Research Survey
.
arXiv
2019, arXiv:1907.08674.
41.
Rhode
,
M.
;
Burnap
,
P.
;
Jones
,
K.
Early-stage malware prediction using recurrent neural networks
.
Comput Secur
2018
,
77
,
578
594
.
42.
Kolosnjaji
,
B.
;
Zarras
,
A.
;
Webster
,
G.
;
Eckert
,
C.
Deep learning for classification of malware system call sequences. In
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
;
Springer
:
Cham, Switzerland
,
2016
; Volume
9992
.
43.
Hardy
,
W.
;
Chen
,
L.
;
Hou
,
S.
;
Ye
,
Y.
; Li,
X.
DL
4 MD: A Deep Learning Framework for Intelligent Malware Detection;
CSREA Press
:
Las Vegas, NV, USA
,
2016
; pp.
61
67
.
44.
Saxe
,
J.
;
Berlin
,
K.
eXpose: A Character-Level Convolutional Neural Network with Embeddings For Detecting Malicious URLs, File Paths and Registry Keys
. arXiv 2017, arXiv:1702.08568.
45.
Azmoodeh
,
A.
;
Dehghantanha
,
A.
;
Choo
,
K.K.R.
Robust Malware Detection for Internet of (Battlefield) Things Devices Using Deep Eigenspace Learning
.
IEEE Trans. Sustain. Comput.
2019
,
4
,
88
95
.
46.
Cui
,
Z.
;
Xue
,
F.
;
Cai
,
X.
;
Cao
,
Y.
;
Wang
,
G.G.
;
Chen
,
J.
Detection of Malicious Code Variants Based on Deep Learning
.
IEEE Trans Ind. Inf.
2018
,
14
,
3187
3196
.
47.
Ni
,
S.
;
Qian
,
Q.
;
Zhang
,
R.
Malware identification using visualization images and deep learning
.
Comput Secur
2018
,
77
,
871
885
.
48.
Rosenberg
,
I.
;
Sicard
,
G.
;
David
,
E.
End-to-end deep neural networks and transfer learning for automatic analysis of nation-state malware
.
Entropy
2018
,
20
,
390
.
49.
Kolosnjaji
,
B.
;
Eraisha
,
G.
;
Webster
,
G.
;
Zarras
,
A.
;
Eckert
,
C.
Empowering convolutional networks for malware classification and analysis
. In
Proceedings of the International Joint Conference on Neural Networks, Anchorage, AK, USA, 14–19 May 2017
This content is only available via PDF.
You do not currently have access to this content.