Time series clustering is a data mining technique where it involves grouping of time series data into a few separate clusters. In this paper, a shape-based clustering is applied on time series of PM10 data collected from 60 air quality monitoring stations in Malaysia from 5th July 2017 to 31st December 2018 obtained from Malaysian Department of Environment. k-shape clustering method along with shape-based distance (SBD) were used to cluster the PM10 time series data. Air quality patterns were analysed from the clusters formed. The results show that the clusters formed using the method used are very well separated and mainly influenced by the region and geographical locations instead of the station’s categories or man activities at the locations.

1.
S.
Aghabozorgi
,
A. S.
Shirkhorshidi
and
T. Y.
Wah
,
Information Systems
53
, pp.
16
38
(
2015
).
2.
C. C.
Aggarwal
and
C. K.
Reddy
,
Algorithms and applications. Chapman&Hall/CRC Data mining and Knowledge Discovery series, Londra
(
2014
).
3.
K.-j.
Kim
,
Neurocomputing
55
(
1-2
), pp.
307
319
(
2003
).
4.
N. M.
Ariff
,
M. A. A.
Bakar
,
S. F. S.
Mahbar
and
M. S. M.
Nadzir
,
Malaysian Journal of Science
38
(
Sp2
), pp.
84
99
(
2019
).
5.
A.
Prokoph
and
F.
Barthelmes
,
Computers & Geosciences
22
(
10
), pp.
1097
1108
(
1996
).
6.
I.
Lazaridis
and
S.
Mehrotra
,
presented at the Proceedings 19th International Conference on Data Engineering
(Cat. No. 03CH37405),
2003
(unpublished).
7.
M. A. A.
Bakar
,
N. M.
Ariff
,
A. A.
Jemain
and
M. S. M.
Nadzir
,
Journal of Hydrologic Engineering
25
(
7
), pp.
05020011
(
2020
).
8.
P.
D’Urso
,
C.
Cappelli
,
D.
Di Lallo
and
R.
Massari
,
Physica A: Statistical Mechanics and its Applications
392
(
9
), pp.
2114
2129
(
2013
).
9.
N. M.
Ariff
,
M. A. A.
Bakar
and
H. Y.
Lim
,
Atmosphere
14
(
5
), pp.
853
(
2023
).
10.
M. G.
Baydogan
and
G.
Runger
,
Data Mining and Knowledge Discovery
30
(
2
), pp.
476
509
(
2016
).
11.
S.
Pandit
and
S.
Gupta
,
International journal of research in computer science
2
(
1
), pp.
29
31
(
2011
).
12.
E. A.
Maharaj
,
P.
D’Urso
and
J.
Caiado
,
Time series clustering and classification.
(
Chapman and Hall/CRC
,
2019
).
13.
J.
Paparrizos
and
L.
Gravano
,
presented at the Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data
,
2015
(unpublished).
14.
J.
Paparrizos
and
L.
Gravano
,
ACM Transactions on Database Systems (TODS)
42
(
2
), pp.
1
49
(
2017
).
15.
M. A. A.
Bakar
,
N. M.
Ariff
,
M. S. M.
Nadzir
,
O. L.
Wen
and
F. N. A.
Suris
,
Malaysian Journal of Fundamental and Applied Sciences
18
(
1
), pp.
52
59
(
2022
).
16.
F. N. A.
Suris
,
M. A. A.
Bakar
,
N. M.
Ariff
,
M. S. Mohd
Nadzir
and
K.
Ibrahim
,
Atmosphere
13
(
4
), pp.
503
(
2022
).
17.
S. C.
Dogruparmak
,
G. A.
Keskin
,
S.
Yaman
and
A.
Alkan
,
Atmospheric Pollution Research
5
(
4
), pp.
656
663
(
2014
).
18.
Y.
Chen
,
L.
Wang
,
F.
Li
,
B.
Du
,
K.-K. R.
Choo
,
H.
Hassan
and
W.
Qin
,
Information Fusion
36
, pp.
225
232
(
2017
).
19.
T.
Stolz
,
M. E.
Huertas
and
A.
Mendoza
,
Atmospheric Pollution Research
11
(
8
), pp.
1271
1280
(
2020
).
20.
P.
D’Urso
,
L.
De Giovanni
and
R.
Massari
,
Chemometrics and Intelligent Laboratory Systems
141
, pp.
107
124
(
2015
).
21.
A.
Sardá-Espinosa
,
R package vignette
12
, pp.
41
(
2017
).
22.
W.
Alahamade
,
I.
Lake
,
C. E.
Reeves
and
B. D. L.
Iglesia
,
presented at the International Conference on Hybrid Artificial Intelligence Systems
,
2020
(unpublished).
23.
J.
Yang
,
C.
Ning
,
C.
Deb
,
F.
Zhang
,
D.
Cheong
,
S. E.
Lee
,
C.
Sekhar
and
K. W.
Tham
,
Energy and Buildings
146
, pp.
27
37
(
2017
).
24.
F.
Fahiman
,
S. M.
Erfani
,
S.
Rajasegarar
,
M.
Palaniswami
and
C.
Leckie
,
presented at the 2017 international joint conference on neural networks (IJCNN)
,
2017
(unpublished).
25.
K.
Erdogan
,
Journal of Technical Science and Technologies
, pp.
47
52
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.