The COVID-19 pandemic has affected worldwide with unprecedented catastrophes. Susceptible-Infected-Recovered-Death (SIRD) model is a well-known mathematical model to replicate the illness epidemic. Estimation of the epidemiological parameters of the SIRD model is crucial for understanding the virus’s transmission and effect of the virus, thus, helping in making informed decisions about the required interventions. In this study, we propose a Metropolis-Hastings algorithm of the Markov Chain Monte Carlo (MCMC) method to estimate the epidemiological parameters of infectious rate, fatality rate, recovery rate, and reproduction numbers. An analysis is performed to investigate how the parameter changes throughout the lifespan of the pandemic. Numerical results show that the Metropolis-Hastings algorithm can adequately estimate the parameters of the COVID-19 pandemic, providing valuable insights into the spread of the virus and the changes in the pandemic behavior over time.

1.
W. H.
Organization
et al, “
Statement on the second meeting of the international health regulations emergency committee regarding the outbreak of novel coronavirus (2019-ncov
),” (
2005
).
2.
E.
Mahase
, “
Covid-19: Who declares pandemic because of “alarming levels” of spread, severity, and inaction
,”
Bmj
368
,
1036
(
2020
).
3.
Kermack
,
W.O.
and
McKendrick
,
A.G.
, “
A contribution to the mathematical theory of epidemics
”.
Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character
,
115
(
772
),
700
721
(
1927
)
4.
C.
Cakmakli
and
Y.
Simsek
, “
Bridging the covid-19 data and the epidemiological model using time-varying parameter sird model
,” arXiv preprint arXiv:2301.13692 (
2023
).
5.
N.
Na
,
J.
Jiang
, and
F.
Yuqiang
, “
Parameter estimation for a class of fractional stochastic SIRD models with random perturbations
,”
Fundamental Journal of Mathematics and Applications
6
,
101
106
(
2023
).
6.
T.-H. T.
Gim
, “
Unpacking the impact of the covid-19 pandemic on regional mobility, economy, and sustainability: insights from asia and beyond
,”
The Annals of Regional Science
,
1
5
(
2023
).
7.
N.
Zulkarnain
,
M. S. A.
Hadi
,
N. F.
Mohammad
, and
I.
Shogar
, “
Fitting time-varying coefficients seird model to covid-19 cases in malaysia
,”
International Journal of Innovative Computing
13
,
59
68
(
2023
).
8.
O. O.
Davarci
,
E. Y.
Yang
,
A.
Viguerie
,
T. E.
Yankeelov
, and
G.
Lorenzo
, “
Dynamic parameterization of a modified SEIRD model to analyze and forecast the dynamics of covid-19 outbreaks in the United States
,”
Engineering with Computers
,
1
25
(
2023
).
9.
D.
Martins
,
A.
Bhaya
, and
F.
Pazos
, “
N-step-ahead optimal control of a compartmental model of covid-19
,”
Journal of Control, Automation and Electrical Systems
,
1
15
(
2023
).
10.
N.
Perra
, “
Non-pharmaceutical interventions during the covid-19 pandemic: A review
,”
Physics Reports
913
,
1
52
(
2021
).
11.
S.
Lai
,
N. W.
Ruktanonchai
,
L.
Zhou
,
O.
Prosper
,
W.
Luo
,
J. R.
Floyd
,
A.
Wesolowski
,
M.
Santillana
,
C.
Zhang
,
X.
Du
, et al, “
Effect of non-pharmaceutical interventions to contain covid-19 in China
,”
nature
585
,
410
413
(
2020
).
12.
N.
Ferguson
,
D.
Laydon
,
G. Nedjati
Gilani
,
N.
Imai
,
K.
Ainslie
,
M.
Baguelin
,
S.
Bhatia
,
A.
Boonyasiri
,
Z. Cucunuba
Perez
,
G.
CuomoDannenburg
, et al, “
Report 9: Impact of non-pharmaceutical interventions (npis) to reduce covid19 mortality and healthcare demand
,” (
2020
).
13.
C.
Robert
,
G.
Casella
,
C. P.
Robert
, and
G.
Casella
, “
Metropolis–hastings algorithms
,”
Introducing Monte Carlo Methods with R
,
167
197
(
2010
).
14.
E.
Dong
,
H.
Du
, and
L.
Gardner
, “
An interactive web-based dashboard to track covid-19 in real time
,”
The Lancet infectious diseases
20
,
533
534
(
2020
).
15.
H.
Haario
,
M.
Laine
,
A.
Mira
, and
E.
Saksman
, “
Dram: efficient adaptive mcmc
,”
Statistics and computing
16
,
339
354
(
2006
).
16.
Toll
,
S. H.
, "
Global Prospects and Policies
," in
World Economic Outlook, Managing Divergent Recoveries, Chapter 1, International Monetary Fund
, (
2021
).
17.
M.
Felsenthal
, “
Covid-19 to plunge global economy into worst recession since World War II
,”
The World Bank
8
(
2020
).
18.
S.
Aaronson
and
F.
Alba
, “
The unemployment impacts of covid-19: lessons from the great recession
,” Brookings www.brookings.edu/blog/upfront/2020/04/15/the-unemployment-impacts-of-covid-19-lessons-from-the-great-recession” (
2020
).
19.
K.-Y.
Loo
,
A. Y.-K.
Thye
,
L. N.-S.
Law
, and
J. W. F.
Law
, “
Covid-19: An updated situation from singapore
,”
Progress in Microbes & Molecular Biology
4
(
2021
).
20.
U. J. K. J. A. B. V. COVID-19
, “
Program imunisasi covid-19 kebangsaan
”,
26
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.