Medical image processing requires image segmentation and image registration as important diagnostic tools. Image segmentation aims to split structures of interest into distinct components. Meanwhile, image registration finds an ideal transformation between given images. Despite their interrelationship, both tasks are often performed separately. As a result, it faces several problems when undertaken independently. Therefore, the joint models between segmentation and registration have advantages over the separate tasks, particularly when dealing with noisy images. This paper reviewed and compared three existing variational joint segmentation and registration (JSR) models based on active contour without edges and linear curvature. The models are tested on 2D mono-modal and multi-modal images with the presence of white Gaussian noise. The Dice coefficient metric and the registration performance measure are used to evaluate the performance of the models. Numerical results showed that the JSR model using the modified sum of the squared difference outperformed the other two JSR models for noisy mono-modal images. However, the JSR model using the modified normalized gradient fields performed better than the JSR model based on the modified mutual information for noisy multi-modal images.

1.
R.
Merjulah
and
J.
Chandra
, in
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions
(
Elsevier
,
2019
), pp.
209
235
.
2.
J.
Liu
,
G.
Singh
,
S.
Al’Aref
,
B.
Lee
,
O.
Oleru
,
J.K.
Min
,
S.
Dunham
,
M.R.
Sabuncu
, and
B.
Mosadegh
,
Advanced Intelligent Systems
1
,
1900048
(
2019
).
3.
P.
Swierczynski
,
B.W.
Papież
,
J.A.
Schnabel
, and
C.
Macdonald
,
Computerized Medical Imaging and Graphics
65
,
58
(
2018
).
5.
N.
Debroux
,
S.
Ozeré
, and
C.
Le Guyader
,
J Math Imaging Vis
59
,
432
(
2017
).
6.
A.
Ademaj
,
L.
Rada
,
M.
Ibrahim
, and
K.
Chen
,
J Algorithm Comput Technol
14
, (
2020
).
7.
C.
le Guyader
and
L.A.
Vese
,
Computer Vision and Image Understanding
115
,
1689
(
2011
).
8.
S.
Ozeré
and
C.
le Guyader
,
2014 IEEE International Conference on Image Processing, ICIP 2014
2
,
3552
(
2014
).
9.
E.
Hodneland
,
E.A.
Hanson
,
A.
Lundervold
,
J.
Modersitzki
,
E.
Eikefjord
, and
A.Z.
Munthe-Kaas
,
IEEE Transactions on Image Processing
23
,
2392
(
2014
).
10.
D.
Mahapatra
,
Z.
Li
,
F.
Vos
, and
J.
Buhmann
,
Proceedings - International Symposium on Biomedical Imaging 2015-July
,
1312
(
2015
).
11.
M.
Ibrahim
,
K.
Chen
, and
L.
Rada
,
J Algorithm Comput Technol
10
,
314
(
2016
).
12.
B.
Fischer
and
J.
Modersitzki
,
Linear Algebra Appl
380
,
107
(
2003
).
13.
I.
Aganj
and
B.
Fischl
,
IEEE Signal Process Lett
24
,
1661
(
2017
).
14.
A.
Pawar
,
Y.J.
Zhang
,
C.
Anitescu
, and
T.
Rabczuk
,
Computers and Mathematics with Applications
78
,
3250
(
2019
).
15.
N.
Debroux
,
J.
Aston
,
F.
Bonardi
,
A.
Forbes
,
C.
le Guyader
,
M.
Romanchikova
, and
C.B.
Schonlieb
,
SIAM J Imaging Sci
13
,
351
(
2019
).
16.
J.
Modersitzki
,
FAIR - Flexible Algorithms for Image Registration
(
2009
).
17.
N.
Debroux
,
G.
Lienemann
,
B.
Magnin
,
C.
le Guyader
, and
A.
Vacavant
,
2020
10th International Conference on Image Processing Theory, Tools and Applications, IPTA 2020
(
2020
).
18.
M.
Ibrahim
,
L.
Rada
,
A.
Ademaj
, and
K.
Chen
,
Advances in Intelligent Systems and Computing
99
(
2021
).
19.
N.
Begum
,
N.
Badshah
,
L.
Rada
,
A.
Ademaj
,
M.
Ashfaq
, and
H.
Atta
,
Alexandria Engineering Journal
61
,
12353
(
2022
).
20.
A.
Bhattacharyya
,
Bulletin of the Calcutta Mathematical Society
35
,
99
(
1943
).
21.
M.
El-Melegy
,
R.
Kamel
,
M. Abou
El-Ghar
,
N.S.
Alghamdi
, and
A.
El-Baz
,
Biomedicines
11
,
6
(
2022
).
22.
T.
Chan
and
L.
Vese
,
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
1682
,
141
(
1999
).
23.
R.
Cohen
, preprint arXiv:1107.2782. (
2011
).
24.
P.A.
Viola
,
Alignment by Maximization of Mutual Information
(
1995
).
25.
E.
Haber
and
J.
Modersitzki
,
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
4191
LNCS,
726
(
2006
).
26.
A.
Theljani
and
K.
Chen
,
An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regularization for multimodality registration
.
Inverse Problems and Imaging
,
13
(
2
), pp.
309
335
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.