A Cayley graph is a graph of a group that is build based on a specific subset of the group. The vertices of the graph are the elements of the group, and two different vertices, x and y are adjacent if the product of x and inverse of y is in the subset. One type of Cayley graph recently introduced is the prime power Cayley graph in which the subset of the group considered in constructing this graph contains the elements dividing the order of the group. In this paper, we construct all possible prime power Cayley graphs based on the subsets for the cyclic group of order pq where p and q are primes. The results show that there are seven possible prime power Cayley graphs for this group.
Topics
Graph theory
REFERENCES
1.
L.
Babai
, Journal of Combinatorial Theory, Series B
27
, 180
–189
(1979
).2.
L.
Babai
, W. M.
Kantor
, and A.
Lubotsky
, European Journal of Combinatorics
10
, 507
–522
(1989
).3.
T. Tamizh
Chelvam
and M.
Sivagami
, AKCE International Journal of Graphs and Combinatorics
16
, 27
–40
(2019
).4.
A.
Zulkarnain
, N. H.
Sarmin
, H. I. Mat
Hassim
, and A.
Erfanian
, Proceedings of Science and Mathematics
7
, 25
–28
(2022
).5.
R.
Maungchang
, P.
Khachorncharoenkul
, K.
Prathom
, and T.
Suksumran
, Heliyon
7
, e07049
(2021
).6.
S.
Prajnanaswaroopa
, J.
Geetha
, K.
Somasundaram
, and T.
Suksumran
, Symmetry
14
, 2173
(2022
).7.
8.
V. G.
Vizing
, Russian Mathematical Surveys
23
, 125
(1968
).9.
I.
García-Marco
and K.
Knauer
, Journal of Combinatorial Theory, Series B
154
, 211
–238
(2022
).10.
A.
Behajaina
and F.
Legrand
, Linear Algebra and its Applications
642
, 264
–284
(2022
).11.
E. R.
van Dam
and M.
Jazaeri
, “On bipartite distance-regular cayley graphs with small diameter
,” (2021
).12.
C.
Caliskan
, Š.
Miklavič
, S.
Özkan
, and P.
Šparl
, Discussiones Mathematicae Graph Theory
42
, 823
–841
(2020
).13.
A.
Georgakopoulos
and M.
Hamann
, European Journal of Combinatorics
110
, 103668
(2023
).14.
A.
Georgakopoulos
and M.
Hamann
, Combinatorica
39
, 993
–1019
(2019
).15.
This content is only available via PDF.
© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.