The development in genetic algebra, including baric, evolution, Bernstein, train, stochastic, and others, has made significant contributions to the theory of population genetics. Bernstein’s research on exploring evolution operators was the original works on population genetics. This concept is being generalized by the theory quadratic stochastic operators (QSOs) in which induces an algebraic structure on the vector space ℝn called genetic algebras. Unlike linear operator, exploring arbitrary QSOs for any finite dimension presents a challenging problem, therefore a viable strategy to tackle this issue is to introduce classes of QSOs. Hence, this study focuses specifically on a class of QSOs namely b−Bistochastic Volterra QSOs, simply written as bV-QSOs. This operator establishes a genetic algebra on ℝn × ℝn which become the primary focus of our study. To the best of the authors’ knowledge, this is the first time in the literature to define such kind of genetic algebras. Further, we investigate the associativity property of this algebra, demonstrating that two-dimensional bV genetic algebra fails to be associative.

1.
A.
Serebrowsky
, “
On the properties of the mendelian equations
,” in
Doklady AN SSSR
, Vol.
2
(
1934
) pp.
33
36
.
2.
S.
Bernstein
, “
Solution of a mathematical problem related to the theory of inheritance
,”
Uch. Zap. n.-i. kaf. Ukrainy
1
,
83
115
(
1924
).
3.
F.
Mukhamedov
and
N.
Ganikhodjaev
,
Quantum quadratic operators and processes
, Vol.
2133
(
Springer
,
2015
).
4.
R.
Ganikhodzhaev
,
F.
Mukhamedov
, and
U.
Rozikov
, “
Quadratic stochastic operators and processes: results and open problems
,”
Infinite Dimensional Analysis, Quantum Probability and Related Topics
14
,
279
335
(
2011
).
5.
R.
Ganikhodzhaev
,
F.
Mukhamedov
,
A.
Pirnapasov
, and
I.
Qaralleh
, “
Genetic volterra algebras and their derivations
,”
Communications in Algebra
46
,
1353
1366
(
2018
).
6.
H. Abd
El-Qader
,
A. T. Ab
Ghani
, and
I.
Qaralleh
, “
On genetic algebra and its transformation to some evolution algebras in dimension four
,” in
Journal of Physics: Conference Series
, Vol.
1529
(IOP Publishing,
2020
) p.
042093
.
7.
P.
Holgate
, “
Genetic algebras satisfying bernstein’s stationarity principle
,”
Journal of the London Mathematical Society
2
,
613
623
(
1975
).
8.
F.
Mukhamedov
and
I.
Qaralleh
, “
On derivations of genetic algebras
,” in
Journal of Physics: Conference Series
, Vol.
553
(IOP Publishing,
2014
) p.
012004
.
9.
N.
Ganikhodjaev
and
H. H.
Hisamuddin
, “
Associativity in inheritance or are there associative populations
,”
Malaysian Journal of Science
27
,
131
136
(
2008
).
10.
N.
Ganikhodzhaev
,
U.
Zhamilov
, and
R.
Mukhitdinov
, “
Nonergodic quadratic operators for a two-sex population
.”
Ukrainian Mathematical Journal
65
(
2014
).
11.
A. F. b.
Embong
and
N. N. B. L. B.
Chye
@
Mohd Hairie
Lim
, “
Regularity of b-bistochastic-volterra quadratic stochastic operators
,” in
AIP Conference Proceedings
, Vol.
2465
(AIP Publishing LLC,
2022
) p.
020014
.
12.
N. N. L. B.
Chye
,
M. H.
Lim
, and
A. F.
bin Embong
, “
The fixed points of b-bistochastic-volterra quadratic stochastic operators on s1 × s1
,”
Applied Mathematics and Computational Intelligence
10
,
340
350
(
2021
).
13.
U.
Rozikov
and
U.
Zhamilov
, “
Volterra quadratic stochastic operators of a two-sex population
,”
Ukrainian Mathematical Journal
63
,
1136
1153
(
2011
).
14.
F.
Mukhamedov
and
A. F.
Embong
, “
On b-bistochastic quadratic stochastic operators
,”
Journal of Inequalities and Applications
2015
,
226
(
2015
).
15.
G. H.
Hardy
,
J. E.
Littlewood
, and
G.
Polya
,
Cambridge, England
(
1952
).
16.
R. N.
Ganikhodzhaev
, “
On the definition of bistochastic quadratic operators
,”
Russian Mathematical Surveys
48
,
244
246
(
1993
).
17.
F.
Mukhamedov
and
A. F.
Embong
, “
On stable b-bistochastic quadratic stochastic operators and associated non-homogenous markov chains
,”
Linear and Multilinear Algebra
66
,
1
21
(
2018
).
18.
F.
Mukhamedov
and
A. F.
Embong
, “
On mixing of markov measures associated with b-bistochastic qsos
,” in
AIP Conference Proceedings
, Vol.
1739
(AIP Publishing LLC,
2016
) p.
020090
.
19.
F.
Mukhamedov
and
A.
Embong
,
“Extremity of\(b\)-bistochastic quadratic stochastic operators on 2d simplex,” Malaysian Journal of Mathematical Sciences
11
,
119
139
(
2017
).
20.
F.
Mukhamedov
and
A. F.
Embong
, “
b—bistochastic quadratic stochastic operators and their properties
,” in
Journal of Physics: Conference Series
, Vol.
697
(IOP Publishing,
2016
) p.
012010
.
21.
F.
Mukhamedov
,
I.
Qaralleh
,
T.
Qaisar
, and
M. A.
Hasan
, “
Genetic algebras associated with ξ (a)-quadratic stochastic operators
,”
Entropy
25
,
934
(
2023
).
22.
A.
Embong
,
M.
Zulkifly
, and
D.
Arifin
, “
Genetic algebras generated by b-bistochastic quadratic stochastic operators: The character and associativity
,”
Malays. J. Math. Sci
17
,
25
41
(
2023
).
23.
D. S.
Parker
and
P.
Ram
, “
Greed and majorization
,”
Computer Science Deparment, University of California
(
1997
).
24.
N.
Ganikhodjaev
,
M.
Saburov
, and
U.
Jamilov
, “
Mendelian and non-mendelian quadratic operators
,”
Applied Mathematics and Information Sciences
7
,
1721
1729
(
2013
).
25.
Y. I.
Lyubich
, “
Iterations of quadratic maps. math. economics and functional analysis
,” (
1974
).
26.
A. F.
Embong
and
N. N. B. L. B.
Chye@ Mohd Hairie Lim
, “
Regularity of b-bistochastic-volterra quadratic stochastic operators
,” in
AIP Conference Proceedings
, Vol.
2465
(AIP Publishing LLC,
2022
) p.
020014
.
This content is only available via PDF.
You do not currently have access to this content.