Because of easy dyeing operations and high durability throughout the washing process, azo dyes of a reactive nature are widely employed in textile coloring methods. About twenty to forty percent of these colors stay in the effluents. As a result of their reactive, toxic, and stable nature, discharges of such effluent into receiving waterways might be dangerous to exposed species. Azo dyes are the most common cause of mutation and cancer among xenobiotic contaminants. The removal of these pigments, as well as the clean-up of linked polluted areas, remains a global challenge. The sorption of reactive dyes on diverse adsorbing agents like bacteria, fungus, algae, water plants, and chitosan has been well-researched, etc. Various adsorbing agents like Lentinus sajor-caju, Spirogyra majuscule, pistachio husk, Hydrilla verticillate, chitosan, palm oil industry waste, clay were utilized to remove Reactive Red (RR) 120. This study investigates the synthesis of Chitosan-enhanced Nano Zero-Valent Iron (CS-nZVI), the adsorption of RR dye by the synthesized material as well as its kinetic and isothermal studies. The adsorptive capability was calculated to be 3.017481mg/g. Kinetic model – pseudo-1st, pseudo-2nd, and elovich models, isotherm models— Langmuir, Freundlich, Jovanovic, Sips, Vieth-Sladek, Khan, Radke-Prausnitz and Unilan, were utilized as well as non-linear regression fittings. Discriminatory analyses of statistical data centered on RMSE (root-mean-square error), adjR2 (adjusted coefficient of determination), AF (accuracy factor), AICc (Akaike Information Criterion corrected) BF (bias factor), were used in finding the superior fit model. The best kinetic models were both pseudo-1st and pseudo 2nd order and the best isotherm model was Vieth-Sladek. The results obtained suggest reliable isothermal and kinetic behavior that will allow the fitting of several models when the zero-valent iron nanoparticle is used in the adsorption of other anionic azo dyes.

1.
J.
Riu
,
I.
Schönsee
,
D.
Barceló
, and
C.
Ràfols
, “
Determination of sulphonated azo dyes in water and wastewater
,”
TrAC - Trends Anal. Chem.
, vol.
16
, no.
7
, pp.
405
419
, (
1997
). doi: .
2.
J.
Paul
,
D. B.
Naik
, and
S.
Sabharwal
, “
High energy induced decoloration and mineralization of Reactive Red 120 dye in aqueous solution: A steady state and pulse radiolysis study
,”
Radiat. Phys. Chem.
, vol.
79
, no.
7
, pp.
770
776
, (
2010
). doi: .
3.
K.
Klemola
,
J.
Pearson
,
A.
von Wright
,
J.
Liesivuori
, and
P.
Lindström-Seppä
, “
Evaluating the toxicity of reactive dyes and dyed fabrics with the hepa-1 cytotoxicity test
,”
Autex Res. J.
, vol.
7
, no.
3
, pp.
224
230
, (
2007
).
4.
I. A.
Mohammed
,
A. H.
Jawad
,
A. S.
Abdulhameed
, and
M. S.
Mastuli
, “
Physicochemical modification of chitosan with fly ash and tripolyphosphate for removal of reactive red 120 dye: Statistical optimization and mechanism study
,”
Int. J. Biol. Macromol.
, vol.
161
, pp.
503
513
, (
2020
). doi: .
5.
B. Ozbey
Unal
et al, “
Adsorption and Fenton oxidation of azo dyes by magnetite nanoparticles deposited on a glass substrate
,”
J. Water Process Eng.
, vol.
32
, no. July, p.
100897
, (
2019
). doi: .
6.
J.
Dotto
,
M. R.
Fagundes-Klen
,
M. T.
Veit
,
S. M.
Palácio
, and
R.
Bergamasco
, “
Performance of different coagulants in the coagulation/flocculation process of textile wastewater
,”
J. Clean. Prod.
, vol.
208
, pp.
656
665
, (
2019
). doi: .
7.
A.
Jawad
and
S. K. Abdul
Karim
, “
Cr(VI) Ions Removal from Aqueous Solutions Using Carrot Residues as an Adsorbent
,”
Sci. Lett.
, vol.
13
, no.
2
, p.
30
, (
2020
). doi: .
8.
R.
Xu
et al, “
Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes
,”
J. Memb. Sci.
, vol.
595
, no. June 2019, p.
117472
, (
2020
). doi: .
9.
F.
Moradnia
,
S. Taghavi
Fardood
,
A.
Ramazani
, and
V. K.
Gupta
, “
Green synthesis of recyclable MgFeCrO4 spinel nanoparticles for rapid photodegradation of direct black 122 dye
,”
J. Photochem. Photobiol. A Chem.
, vol.
392
, no. November 2019, p.
112433
, (
2020
). doi: .
10.
A. M.
Awad
et al, “
Adsorption of organic pollutants by nanomaterial-based adsorbents: An overview
,”
J. Mol. Liq.
, vol.
301
, p.
112335
, (
2020
). doi: .
11.
Z.
Dongsheng
,
G.
Wenqiang
,
C.
Guozhang
,
L.
Shuai
,
J.
Weizhou
, and
L.
Youzhi
, “
Removal of heavy metal lead(II) using nanoscale zero-valent iron with different preservation methods
,”
Adv. Powder Technol.
, vol.
30
, no.
3
, pp.
581
589
, (
2019
). doi: .
12.
S.
Li
,
W.
Wang
,
F.
Liang
, and
W. X.
Zhang
, “
Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application
,”
J. Hazard. Mater.
, vol.
322
, pp.
163
171
, (
2017
). doi: .
13.
L.
Liang
,
X.
Li
,
Y.
Guo
,
Z.
Lin
,
X.
Su
, and
B.
Liu
, “
The removal of heavy metal cations by sulfidated nanoscale zero-valent iron (S-nZVI): The reaction mechanisms and the role of sulfur
,”
J. Hazard. Mater.
, vol.
404
, no.
PA
, p.
124057
, (
2021
). doi: .
14.
A.
Latif
et al, “
Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications
,”
Environ. Pollut.
, vol.
264
, p.
114728
, (
2020
). doi: .
15.
G.
Vilardi
,
M.
Stoller
,
L.
Di Palma
,
K.
Boodhoo
, and
N.
Verdone
, “
Metallic iron nanoparticles intensified production by spinning disk reactor: Optimization and fluid dynamics modelling
,”
Chem. Eng. Process. - Process Intensif.
, vol.
146
, no. October, (
2019
). doi: .
16.
R.
Fu
,
Y.
Yang
,
Z.
Xu
,
X.
Zhang
,
X.
Guo
, and
D.
Bi
, “
The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI
),”
Chemosphere
, vol.
138
, pp.
726
734
, (
2015
). doi: .
17.
M. Y. D.
Alazaiza
et al, “
Nanoscale zero-valent iron application for the treatment of soil, wastewater and groundwater contaminated with heavy metals: a review
,”
Desalin. Water Treat.
, vol.
253
, no. October 2021, pp.
194
210
, (
2022
). doi: .
18.
C.
Zhang
et al, “
Enahanced biosorption of Cu(II) by magnetic chitosan microspheres immobilized Aspergillus sydowii (MCMAs) from aqueous solution
,”
Colloids Surfaces A Physicochem. Eng. Asp.
, vol.
581
, no. May, p.
123813
, (
2019
). doi: .
19.
S.
Chaudhary
,
S.
Kumar
,
V.
Kumar
, and
R.
Sharma
, “
Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade
,”
Int. J. Biol. Macromol.
, vol.
152
, pp.
154
170
, (
2020
). doi: .
20.
Y.
Shi
,
H.
Hu
, and
H.
Ren
, “
Dissolved organic matter (DOM) removal from biotreated coking wastewater by chitosan-modified biochar: Adsorption fractions and mechanisms
,”
Bioresour. Technol.
, vol.
297
, no. October 2019, p.
122281
, (
2020
). doi: .
21.
D. H. K.
Reddy
and
S. M.
Lee
, “
Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions
,”
Adv. Colloid Interface Sci.
, vol.
201–202
, pp.
68
93
, (
2013
). doi: .
22.
B.
Geng
,
Z.
Jin
,
T.
Li
, and
X.
Qi
, “
Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles
,”
Chemosphere
, vol.
75
, no.
6
, pp.
825
830
, (
2009
). doi: .
23.
Z.
Qi
et al, “
Synthesis of nanoscale zero-valent iron loaded chitosan for synergistically enhanced removal of U(VI) based on adsorption and reduction
,”
J. Colloid Interface Sci.
, vol.
552
, pp.
735
743
, (
2019
). doi: .
24.
Lagergren
and
Svenska
, “
About the Theory of So-called Adsorption of Soluble Substances
,”
Sven. Vetenskapsakad. Handingarl
, vol.
24
, pp.
1
39
, 1898, Accessed: Jul. 20, (
2023
). [Online]. Available: https://cir.nii.ac.jp/crid/1570009750361875328.bib?lang=en.
25.
Y. S.
Ho
and
G.
Mckay
, “
Pseudo-second order model for sorption processes
,”
Process Biochem.
, vol.
34
, pp.
451
465
, (
1999
). doi: .
26.
F. W.
Cope
, “
Generalizations of the Roginsky-Zeldovich (or Elovich) equation for charge transport across biological surfaces
,”
Bull. Math. Biophys.
, vol.
34
, no.
3
, pp.
419
427
, (
1972
). doi: .
27.
H.
Moussout
,
H.
Ahlafi
,
M.
Aazza
, and
H.
Maghat
, “
Critical of linear and nonlinear equations of pseudo-first order and pseudo-second order kinetic models
,”
Karbala Int. J. Mod. Sci.
, vol.
4
, no.
2
, pp.
244
254
, (
2018
). doi: .
28.
G.
Blanchard
,
M.
Maunaye
, and
G.
Martin
, “
Removal of heavy metals from waters by means of natural zeolites
,”
Water Res.
, vol.
18
, no.
12
, pp.
1501
1507
, (
1984
). doi: .
29.
I.
Langmuir
, “
THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM
,”
J. Am. Chem. Soc.
, vol.
40
, no.
2
, pp.
1361
1402
, (
1918
). doi: .
30.
A. M.
Carmo
,
L. S.
Hundal
, and
M. L.
Thompson
, “
Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients
,”
Environ. Sci. Technol.
, vol.
34
, no.
20
, pp.
4363
4369
, (
2000
). doi: .
31.
D. S.
Jovanović
, “
Physical adsorption of gases: Practical application of derived isotherms for monolayer and mnhilayer adsorption
,”
Colloid Polym. Sci.
, vol.
235
, pp.
1214
1225
, (
1969
).
32.
R.
Sips
, “
On the structure of a catalyst surface
,”
J. Chem. Phys.
, vol.
16
, no.
5
, pp.
490
495
, (
1948
). doi: .
33.
A. A.
Khan
and
R. P.
Singh
, “
Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms
,”
Colloids and Surfaces
, vol.
24
, no.
1
, pp.
33
42
, (
1987
). doi: .
34.
W. R.
Vieth
and
K. J.
Sladek
, “
A model for diffusion in a glassy polymer
,”
J. Colloid Sci.
, vol.
20
, no.
9
, pp.
1014
1033
, (
1965
). doi: .
35.
C. J.
Radke
and
J. M.
Prausnitz
, “
Adsorption of Organic Solutes from Dilute Aqueous Solution of Activated Carbon
,”
J. Am. Chem. Soc.
, vol.
11
, no.
4
, pp.
445
451
, (
1972
). doi: .
36.
H. J.
Motulsky
and
L. A.
Ransnas
, “
Fitting curves to data using nonlinear regression: a practical and nonmathematical review
,”
FASEB J.
, vol.
1
, no.
5
, pp.
365
374
, (
1987
). doi: .
37.
N. F.
Cardoso
et al, “
Application of cupuassu shell as biosorbent for the removal of textile dyes from aqueous solution
,”
J. Environ. Manage.
, vol.
92
, no.
4
, pp.
1237
1247
, (
2011
). doi: .
This content is only available via PDF.
You do not currently have access to this content.