We study the two-dimensional map modelling neuron known as the Chialvo map. We consider Chialvo maps on a one-dimensional lattice in the presence of quenched disorder. We study the various dynamical phases for various values of coupling strength and quenched disorder. We observe the ‘chimera-like’ states where different sites reach different qualitative dynamical behavior. Even in the strong coupling, we observe the ‘chimera-like’ states. Thus the neurons cannot be identical or uniform. The coupling is purely local.

1.
K.
Schneider
and
J.D.
Murray
:
Mathematical biology. biomathematics vol. 19. springer-verlag 1989
, 767 s., 292 abb., dm 98, —.
Biometrical Journal
,
33
(
3
):
377
378
,
1991
.
2.
L.
Glass
and
M. C.
Mackey
.
From clocks to chaos: The rhythms of life
.
Princeton University Press
,
1988
.
3.
A. T.
Winfree
and
J. J.
Tyson
.
When time breaks down: The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias
.
Physics Today
,
41
(
12
):
107
,
1988
.
4.
J.
Rinzel
and
G. B.
Ermentrout
.
Analysis of neural excitability and oscillations
.
Methods in neuronal modeling
,
2
:
251
292
,
1998
.
5.
E. M.
Izhikevich
.
Dynamical systems in neuroscience
.
MIT press
,
2007
.
6.
E. M.
Izhikevich
and
R.
FitzHugh
.
Fitzhugh-nagumo model
.
Scholarpedia
,
1
(
9
):
1349
,
2006
.
7.
A. N.
Burkitt
.
A review of the integrate-and-fire neuron model: I. homogeneous synaptic input
.
Biological cybernetics
,
95
:
1
19
,
2006
.
8.
J. M.
Bower
,
H.
Cornelis
, and
D.
Beeman
.
GENESIS, The GEneral NEural SImulation System
, pages
1
8
.
Springer
New York, New York, NY
,
2013
.
9.
D. R.
Chialvo
and
A. V.
Apkarian
.
Modulated noisy biological dynamics: three examples
.
Journal of Statistical Physics
,
70
:
375
391
,
1993
.
10.
D. R.
Chialvo
.
Generic excitable dynamics on a two-dimensional map
.
Chaos, Solitons & Fractals
,
5
(
3-4
):
461
479
,
1995
.
11.
B.
Cazelles
,
M.
Courbage
, and
M
Rabinovich
.
Anti-phase regularization of coupled chaotic maps modelling bursting neurons
.
Europhysics Letters
,
56
(
4
):
504
,
2001
.
12.
N. F
Rulkov
.
Regularization of synchronized chaotic bursts
.
Physical Review Letters
,
86
(
1
):
183
,
2001
.
13.
K. V.
Andreev
and
L. V.
Krasichkov
.
Using of phenomenological piecewise continuous map for modeling of neurons behaviour.
arXiv: Chaotic Dynamics,
2002
.
14.
M.
Girardi-Schappo
,
M. H. R.
Tragtenberg
, and
O.
Kinouchi
.
A brief history of excitable map-based neurons and neural networks
.
Journal of neuroscience methods
,
220
(
2
):
116
130
,
2013
.
15.
M. P. K.
Jampa
,
A. R.
Sonawane
,
P. M.
Gade
, and
S.
Sinha
.
Synchronization in a network of model neurons
.
Physical Review E
,
75
(
2
):
026215
,
2007
.
16.
S. S.
Muni
,
H.O.
Fatoyinbo
, and
I.
Ghosh
.
Dynamical effects of electromagnetic flux on chialvo neuron map: Nodal and network behaviors
.
International Journal of Bifurcation and Chaos
,
32
,
07
2022
.
17.
D. J.
Watts
and
S. H.
Strogatz
.
Collective dynamics of ‘small-world’networks
.
nature
,
393
(
6684
):
440
442
,
1998
.
18.
S. A.
Pandit
and
R. E.
Amritkar
.
Characterization and control of small-world networks
.
Physical Review E
,
60
(
2
):
R1119
,
1999
.
19.
F.
Parastesh
,
S.
Jafari
,
H.
Azarnoush
,
Z.
Shahriari
,
Z.
Wang
,
S.
Boccaletti
, and
M.
Perc
.
Chimeras. Physics Reports
,
898
:
1
114
,
2021
.
20.
Y.
Kuramoto
and
D.
Battogtokh
.
Coexistence of coherence and incoherence in nonlocally coupled phase oscillators: A soluble case
.
J. Nonlin. Phenom. Complex Syst.
,
5
,
12
2002
.
21.
D. M.
Abrams
and
S. H.
Strogatz
.
Chimera states for coupled oscillators
.
Physical review letters
,
93
(
17
):
174102
,
2004
.
22.
L. V.
Gambuzza
,
A.
Buscarino
,
S.
Chessari
,
L.
Fortuna
,
R.
Meucci
, and
M.
Frasca
.
Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators
.
Phys. Rev. E
,
90
:
032905
, Sep
2014
.
23.
M. R.
Tinsley
,
S.
Nkomo
, and
K.
Showalter
.
Chimera and phase-cluster states in populations of coupled chemical oscillators
.
Nature Physics
,
8
(
9
):
662
665
,
2012
.
24.
I.
Omelchenko
,
Y.
Maistrenko
,
P.
Hovel
, and
E.
Scholl
.
Loss of coherence in dynamical networks: Spatial chaos and chimera states
.
Phys. Rev. Lett.
,
106
:
234102
, Jun
2011
.
25.
S.
Majhi
,
B. K.
Bera
,
D.
Ghosh
, and
M.
Perc
.
Chimera states in neuronal networks: A review
.
Physics of life reviews
,
28
:
100
121
,
2019
.
26.
C. R.
Laing
.
Chimera states in heterogeneous networks
.
Chaos: An Interdisciplinary Journal of Nonlinear Science
,
19
(
1
):
013113
,
2009
.
27.
C. R.
Laing
.
The dynamics of chimera states in heterogeneous kuramoto networks
.
Physica D: Nonlinear Phenomena
,
238
(
16
):
1569
1588
,
2009
.
28.
E. A.
Martens
,
C.
Bick
, and
M. J.
Panaggio
.
Chimera states in two populations with heterogeneous phase-lag
.
Chaos: An Interdisciplinary Journal of Nonlinear Science
,
26
(
9
):
094819
,
2016
.
29.
E.V.
Rybalova
,
T.E.
Vadivasova
,
G.I.
Strelkova
,
V. S.
Anishchenko
, and
A.S.
Zakharova
.
Forced synchronization of a multilayer hetero-geneous network of chaotic maps in the chimera state mode
.
Chaos: an interdisciplinary journal of nonlinear science
,
29
(
3
):
033134
,
2019
.
30.
L.A.
Smirnov
,
M.I.
Bolotov
,
G.V.
Osipov
, and
A.
Pikovsky
.
Disorder fosters chimera in an array of motile particles
.
Physical Review E
,
104
(
3
):
034205
,
2021
.
31.
H.
Hong
,
K.
Yeo
, and
H. Keun
Lee
.
Coupling disorder in a population of swarmalators
.
Physical Review E
,
104
(
4
):
044214
,
2021
.
32.
H.
Hong
and
E. A.
Martens
.
First-order like phase transition induced by quenched coupling disorder
.
Chaos: An Interdisciplinary Journal of Nonlinear Science
,
s32
(
6
):
063125
,
2022
.
33.
A. K.
Malchow
,
I.
Omelchenko
,
E.
Scholl
, and
P.
Hovel
.
Robustness of chimera states in nonlocally coupled networks of nonidentical logistic maps
.
Physical Review E
,
98
(
1
):
012217
,
2018
This content is only available via PDF.
You do not currently have access to this content.