Experimental and theoretical studies of neutrinoless double beta (0νββ ) decay are in the forefront of the present particle and nuclear physics. There is an expanding interest in computing the values of the associated nuclear matrix elements (NMEs) since this is crucial for extraction of neutrino properties from the potential discoveries of the running and future underground experiments. In addition, one needs to access the effective value of the weak axial-vector coupling gA since it has a strong effect on the 0νββ half-lives. The quenching of gA has thus far been studied through allowed Gamow-Teller β decays, first- and higher-forbidden unique and non-unique β decays, and two-neutrino ββ decays. All these studies probe the value of gA at low momentum exchanges, whereas for high momentum exchanges, in the range of 100 MeV/c, relevant for 0νββ decay, a new probe, the ordinary muon capture (OMC), can be engaged. New muon-producing facilities have been launched and presently an increasing number of measurements of the OMC properties can be carried out. In this article the OMC as a tool to probe the value of gA and wave functions of the 0νββ intermediate nucleus is reviewed.

1.
J.
Engel
and
J.
Menendez
,
Rep. Prog. Phys.
60
,
046301
(
2017
).
2.
H.
Ejiri
,
J.
Suhonen
, and
K.
Zuber
,
Phys. Rep.
797
,
1
(
2019
).
3.
K.
Blaum
,
S.
Eliseev
,
F. A.
Danevich
,
V. I.
Tretyak
,
S.
Kovalenko
,
M. I.
Krivoruchenko
,
Y. N.
Novikov
, and
J.
Suhonen
,
Rev. Mod. Phys.
92
,
045007
(
2020
).
4.
M.
Agostini
,
G.
Benato
,
J. A.
Detwiler
,
J.
Menéndez
, and
F.
Vissani
,
Rev. Mod. Phys.
95
,
025002
(
2023
).
5.
J.
Vergados
,
H.
Ejiri
, and
F.
Šimkovic
,
Int. J. Mod. Phys. E
25
,
1630007
(
2016
).
8.
J.
Suhonen
and
J.
Kostensalo
,
Front. Phys.
7
,
29
(
2019
).
9.
P.
Gysbers
et al,
Nature Physics
15
,
428
(
2019
).
10.
L.
Jokiniemi
,
J.
Suhonen
, and
J.
Kotila
,
Front. Phys.
9
,
652536
(
2021
).
11.
T.
Siiskonen
,
J.
Suhonen
,
V. A.
Kuz’min
, and
T. V.
Tetereva
,
Nucl. Phys. A
635
,
446
(
1998
); Erratum: Nucl. Phys. A 651, 437 (1999).
12.
T.
Siiskonen
,
J.
Suhonen
, and
M.
Hjorth-Jensen
,
J. Phys. G: Nucl. Part. Phys.
25
,
L55
(
1999
).
13.
T.
Siiskonen
,
J.
Suhonen
, and
M.
Hjorth-Jensen
,
Phys. Rev. C
59
,
R1839
(
1999
).
14.
T.
Siiskonen
,
M.
Hjorth-Jensen
and
J.
Suhonen
,
Phys. Rev. C
63
,
055501
(
2001
).
15.
M.
Kortelainen
and
J.
Suhonen
,
Europhys. Lett.
58
,
666
(
2002
).
16.
M.
Kortelainen
and
J.
Suhonen
,
Nucl. Phys. A
713
,
501
(
2003
).
17.
M.
Kortelainen
and
J.
Suhonen
,
J. Phys. G: Nucl. Part. Phys.
30
,
2003
(
2004
).
18.
M.
Morita
and
A.
Fujii
,
Phys. Rev.
118
,
606
(
1960
).
19.
L.
Jokiniemi
,
J.
Suhonen
H.
Ejiri
, and
I. H.
Hashim
,
Phys. Lett. B
794
,
143
(
2019
).
20.
I. H.
Hashim
et al,
Phys. Rev. C
97
,
014617
(
2018
).
21.
L.
Jokiniemi
and
J.
Suhonen
,
Phys. Rev. C
100
,
014619
(
2019
).
22.
L.
Jokiniemi
and
J.
Suhonen
,
Phys. Rev. C
102
,
024303
(
2020
).
23.
D.
Zinatulina
et al,
Phys. Rev. C
99
,
024327
(
2019
).
24.
P.
Gimeno
,
L.
Jokiniemi
,
J.
Kotila
,
M.
Ramalho
, and
J.
Suhonen
,
Universe
9
,
00270
(
2023
).
25.
L.
Jokiniemi
,
T.
Miyagi
,
S. R.
Stroberg
,
J. D.
Holt
,
J.
Kotila
, and
J.
Suhonen
,
Phys. Rev. C
107
,
014327
(
2023
).
26.
M.
Horoi
and
B. A.
Brown
,
Phys. Rev. Lett.
110
,
222502
(
2013
).
27.
P.
Pirinen
and
J.
Suhonen
,
Phys. Rev. C
91
,
054309
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.