Support Vector Machine (SVM) modelling approach focuses on dimensional reduction with a powerful generalization capability to solve problems such as non-linearity, and local extremes. However, the ability of SVM to learn and generalize depends on the collection of acceptable parameters that directly affect the output of the model. In addition, deploying relevant feature sets is also an issue in obtaining optimal classification. Thus, this work deploys eight swarm intelligence algorithms to improve the SVM classifier’s accuracy by conducting two experiments: feature selection and tuning SVM parameters using the obtained feature set. The deployed swarm intelligence algorithms include Particle swarm optimization (PSO), Genetic Algorithm (GA), Firefly Algorithm (FA), Salp Swarm Algorithm (SSA), Bat Algorithm (BA), Sine Cosine Algorithm (SCA), Whale Optimization Algorithm (WOA), and Multi Verse Optimization (MVO). The undertaken experiments were on six medical benchmark datasets that are of various dimensions. Evaluation was based on two metrics: classification accuracy and size of feature set. This work’s significance is to present the comparison and determine which swarm algorithm is the best to be used in a large size medical dataset. The experimental results support existing literature that noted the swarm intelligence are useful feature selection as well as optimizing SVM parameter while maintaining acceptable accuracy.

1.
I.
Markoulidakis
,
I.
Rallis
,
I.
Georgoulas
,
G.
Kopsiaftis
,
A.
Doulamis
, and
N.
Doulamis
, “
Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem
,”
Technologies
, Vol.
9
, No.
4
, Art. No. 4, Dec.
2021
, Doi: .
2.
R.
Eberhart
and
J.
Kennedy
, “
A new optimizer using particle swarm theory
,” in
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
, Oct.
1995
, pp.
39
43
. Doi: .
3.
X.-S.
Yang
, “
Firefly algorithm, stochastic test functions and design optimisation
,”
International Journal of Bio-Inspired Computation
, Vol.
2
, No.
2
, pp.
78
84
, Jan.
2010
, Doi: .
4.
K.
De Jong
, “
Learning with genetic algorithms: An overview
,”
Mach Learn
, Vol.
3
, No.
2
, pp.
121
138
, Oct.
1988
, Doi: .
5.
S.
Mirjalili
,
A. H.
Gandomi
,
S. Z.
Mirjalili
,
S.
Saremi
,
H.
Faris
, and
S. M.
Mirjalili
, “
Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems
,”
Advances in Engineering Software
, Vol.
114
, pp.
163
191
, Dec.
2017
, Doi: .
6.
S.
Mirjalili
and
A.
Lewis
, “
The Whale Optimization Algorithm
,”
Advances in Engineering Software
, Vol.
95
, pp.
51
67
, May
2016
, Doi: .
7.
Y.
Shang
,
X.
Zheng
,
J.
Li
,
D.
Liu
, and
P.
Wang
, “
A Comparative Analysis of Swarm Intelligence and Evolutionary Algorithms for Feature Selection in SVM-Based Hyperspectral Image Classification
,”
Remote Sensing
, Vol.
14
, No.
13
, Art. No. 13, Jan.
2022
, Doi: .
8.
W.
Zeng
,
Y.
Liao
,
Y.
Chen
,
Q. ying
Diao
,
Z. ying
Fu
, and
F.
Yao
, “
Research on classification and recognition of the skin tumors by laser ultrasound using support vector machine based on particle swarm optimization
,”
Optics & Laser Technology
, Vol.
158
, p.
108810
, Feb.
2023
, Doi: .
9.
D. A.
Kristiyanti
,
I. S.
Sitanggang
,
Annisa
, and
S.
Nurdiati
, “
Feature Selection Using New Version of V-Shaped Transfer Function for Salp Swarm Algorithm in Sentiment Analysis
,”
Computation
, Vol.
11
, No.
3
, Art. No. 3, Mar.
2023
, Doi: .
10.
Z.
Lai
,
X.
Chen
,
J.
Zhang
,
H.
Kong
, and
J.
Wen
, “
Maximal Margin Support Vector Machine for Feature Representation and Classification
,”
IEEE Transactions on Cybernetics
, pp.
1
14
,
2023
, Doi: .
11.
I. M. S.
Ali
and
D.
Hariprasad
, “
Hyper-heuristic salp swarm optimization of multi-kernel support vector machines for big data classification
,”
Int. j. inf. tecnol.
, Vol.
15
, No.
2
, pp.
651
663
, Feb.
2023
, Doi: .
12.
J. L.
Gómez-Sirvent
,
F. L. de la
Rosa
,
R.
Sánchez-Reolid
,
A.
Fernández-Caballero
, and
R.
Morales
, “
Optimal Feature Selection for Defect Classification in Semiconductor Wafers
,”
IEEE Transactions on Semiconductor Manufacturing
, Vol.
35
, No.
2
, pp.
324
331
, May
2022
, Doi: .
13.
L.
Abualigah
and
A. J.
Dulaimi
, “
A novel feature selection method for data mining tasks using hybrid Sine Cosine Algorithm and Genetic Algorithm
,”
Cluster Comput
, Vol.
24
, No.
3
, pp.
2161
2176
, Sep.
2021
, Doi: .
14.
H.
Jia
and
K.
Sun
, “
Improved barnacles mating optimizer algorithm for feature selection and support vector machine optimization
,”
Pattern Anal Applic
, Vol.
24
, No.
3
, pp.
1249
1274
, Aug.
2021
, Doi: .
15.
M.
Mafarja
et al, “
Classification framework for faulty-software using enhanced exploratory whale optimizer-based feature selection scheme and random forest ensemble learning
,”
Appl Intell, Feb.
2023
, Doi: .
16.
M.
Rostami
,
K.
Berahmand
,
E.
Nasiri
, and
S.
Forouzandeh
, “
Review of swarm intelligence-based feature selection methods
,”
Engineering Applications of Artificial Intelligence
, Vol.
100
, p.
104210
, Apr.
2021
, Doi: .
17.
M.
Gil
,
K.
Wróbel
,
J.
Montewka
, and
F.
Goerlandt
, “
A bibliometric analysis and systematic review of shipboard Decision Support Systems for accident prevention
,”
Safety Science
, Vol.
128
, p.
104717
, Aug.
2020
, Doi: .
18.
X.-S.
Yang
, “A New Metaheuristic Bat-Inspired Algorithm,” in
Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)
,
J. R.
González
,
D. A.
Pelta
,
C.
Cruz
,
G.
Terrazas
, and
N.
Krasnogor
, Eds., in Studies in Computational Intelligence.
Berlin, Heidelberg
:
Springer
,
2010
, pp.
65
74
. Doi: .
19.
S.
Mukherjee
and
V.
Vapnik
, “
Multivariate Density Estimation: An SVM Approach
,” Apr.
1999
, Accessed: Jun. 22, 2023. [Online]. Available: https://dspace.mit.edu/handle/1721.1/7260
20.
A.
Ali
et al, “
Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review
,”
Applied Sciences
, Vol.
12
, No.
19
, Art. No. 19, Jan.
2022
, Doi: .
21.
A.
Gasparetto
,
M.
Marcuzzo
,
A.
Zangari
, and
A.
Albarelli
, “
A Survey on Text Classification Algorithms: From Text to Predictions
,”
Information
, Vol.
13
, No.
2
, Art. No. 2, Feb.
2022
, Doi: .
22.
J.
Dou
et al, “
Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM
,”
Remote Sensing
, Vol.
11
, p.
638
, Mar.
2019
, Doi: .
23.
A.
Roy
and
S.
Chakraborty
, “
Support vector machine in structural reliability analysis: A review
,”
Reliability Engineering & System Safety
, Vol.
233
, p.
109126
, May
2023
, Doi: .
24.
A.
Said
,
M. H.
Saad
,
Sh. M.
Eladl
,
Z. M. S.
Elbarbary
,
A. I.
Omar
, and
M. A.
Saad
, “
Support Vector Machine Parameters Optimization for 500 kV Long OHTL Fault Diagnosis
,”
IEEE Access
, Vol.
11
, pp.
3955
3969
,
2023
, Doi: .
25.
N.
Bacanin
,
K.
Venkatachalam
,
T.
Bezdan
,
M.
Zivkovic
, and
M.
Abouhawwash
, “
A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset
,”
Microprocessors and Microsystems
, Vol.
98
, p.
104778
, Apr.
2023
, Doi: .
26.
T.
Thaher
,
H.
Chantar
,
J.
Too
,
M.
Mafarja
,
H.
Turabieh
, and
E. H.
Houssein
, “
Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems
,”
Expert Systems with Applications
, Vol.
195
, p.
116550
, Jun.
2022
, Doi: .
27.
M.
Abbaszadeh
,
S.
Soltani-Mohammadi
, and
A. N.
Ahmed
, “
Optimization of support vector machine parameters in modeling of Iju deposit mineralization and alteration zones using particle swarm optimization algorithm and grid search method
,”
Computers & Geosciences
, Vol.
165
, p.
105140
, Aug.
2022
, Doi: .
28.
L.
Zhang
, “
A Feature Selection Algorithm Integrating Maximum Classification Information and Minimum Interaction Feature Dependency Information
,”
Comput Intell Neurosci
, Vol.
2021
, p.
3569632
, Dec.
2021
, Doi: .
This content is only available via PDF.
You do not currently have access to this content.