Algorithms are increasingly being used and recognized for their ability to improve the performance of diagnostic tools such as contemporary electrocardiogram (ECG). For instance, evidence from previous studies reveals that QRS enhancement and detection algorithms have enabled the ECG device to measure and classify heartbeat more accurately. Based on the review of the previous works on QRS detection in ECG, this paper examines the key components of the ECG, QRS detection features, the different techniques used for developing QRS enhancement and detection algorithms as well as the criteria for evaluating their performance.

1.
Bernama
,
Heart Disease Still Leading Cause of Death for Malaysians
. (
2019
), available at: https://www.freemalaysiatoday.com/category/nation/2019/01/24/heart-disease-still-leading-cause-of-death-for-malaysians/.
2.
Department of Statistics Malaysia
,
Statistics on Causes of Death, Malaysia.
(
2018
), available at: https://www.dosm.gov.my/portal-main.
3.
Elankovan
V.
,
IJN Cardiologist: Malaysians Are Now Developing Heart Disease at a Younger Age.
(
2018
), available at: https://worldofbuzz.com/ijn-cardiologist-msians-are-now-developing-heart-disease-at-a-younger-age/.
4.
WebMD LLC
,
Heart Disease: Types, Causes, and Symptoms.
(
2019
), available at: https://www.webmd.com/heart-disease/heart-disease-types-causes-symptoms.
5.
American Heart Association
,
What Causes Heart Failure.
(
2023
), available at: https://www.heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/causes-of-heart-failure.
6.
WebMD LLC
,
Heart Disease and Electrocardiograms.
(
2023
), available at: https://www.webmd.com/heart-disease/electrocardiogram-ekgs.
7.
American Heart Association
,
Electrocardiogram (ECG or EKG)
. (
2022
), available at: https://www.heart.org/en/health-topics/heart-attack/diagnosing-a-heart-attack/electrocardiogram-ecg-or-ekg.
8.
Virtual Medical Centre
,
What is an electrocardiogram?
(
2018
), available at: https://www.myvmc.com/banners-heart-health-centre/ecg-ekg-electrocardiogram/.
9.
Alberta Health
,
How the Heart Works.
(
2022
), available at: https://myhealth.alberta.ca/Health/pages/conditions.aspx?hwid=tx4097abc.
10.
WebMD LLC
,
Anatomy and Circulation of the Heart.
(
2019
), available at: https://www.webmd.com/heart-disease/high-cholesterol-healthy-heart.
11.
National Heart, Lung, and Blood Institute
,
How the Heart Works.
(
2019
), available at: https://www.nhlbi.nih.gov/health-topics/how-heart-works.
12.
Wedro
B.
,
Anatomy of the Heart.
(
2022
), available at: https://www.emedicinehealth.com/electrocardiogram_ecg/article_em.htm.
13.
Goldberger
A. L.
,
Goldberger
Z. D.
,
Shvilkin
A.
,
Chapter 1: Essential Concepts – What is an ECG?
Goldberger’s Clinical Electrocardiography: A Simplified Approach.
(
2018
).
14.
Molnar
C.
,
Gair
J.
,
Chapter 21: The Circulatory System
.
Concepts of Biology.
(
2015
).
15.
Course Hero
,
Physiology of the Heart.
(
2023
), available at: https://www.coursehero.com/study-guides/boundless-ap/physiology-of-the-heart/.
16.
Rosenthal
L.
,
Normal Electrocardiography (ECG) Intervals.
(
2020
), available at: https://emedicine.medscape.com/article/2172196-overview.
17.
Lee
S.
,
Jeong
Y.
,
Park
D.
,
Yun
B. J.
,
Park
K. H.
,
Efficient Fiducial Point Detection of ECG QRS Complex Based on Polygonal Approximation
.
Sensors.
(
2018
).
18.
Hashim
M. A.
,
Hau
Y. W.
,
Bakhteri
R.
,
Efficient QRS Complex Detection Algorithm Implementation on SOC-Based Embedded System
.
Jurnal Teknologi.
(
2016
).
19.
Chen
C. L.
,
Chuang C.
Te
.,
A QRS Detection and R point Recognition Method for Wearable Single-Lead ECG Devices
.
Sensors.
(
2017
).
20.
Klabunde
R. E.
,
Cardiovascular Physiology Concepts: Electrocardiogram
. (
2022
), Available from: https://www.cvphysiology.com/Arrhythmias/A009.htm.
21.
Ashley
E. A.
,
Niebauer
J.
,
Chapter 3: Conquering the ECG
.
Cardiology Explained.
(
2004
).
22.
Goldberger
A. L.
,
Goldberger
Z. D.
,
Shvilkin
A.
,
Chapter 3: How to Make Basic ECG Measurements
.
Goldberger’s Clinical Electrocardiography: A Simplified Approach.
(
2018
).
24.
McGraw
B.
,
Lord
J.
,
Westendorp
M.
,
Evans
L.
,
Chenkin
J.
,
Analysis and Interpretation of the Electrocardiogram.
(
2023
), available at: https://meds.queensu.ca/central/assets/modules/ts-ecg/index.html.
25.
Elgendi
M.
,
Eskofier
B.
,
Dokos
S.
,
Abbott
D.
,
Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems
.
PLOS One.
(
2014
).
26.
Pahlm
O.
,
Sornmo
L.
,
Software QRS Detection in Ambulatory Monitoring: A Review
.
Medical and Biology Engineering and Computing.
(
1984
).
27.
Köhler
B. U.
,
Hennig
C.
,
Orglmeister
R.
,
The Principles of Software QRS Detection
.
IEEE Engineering in Medicine and Biology Magazine.
(
2002
).
28.
Mukhopadhyay
S. K.
,
Mitra
M.
,
Mitra
S.
,
ECG Feature Extraction Using Differentiation, Hilbert Transform, Variable Threshold and Slope Reversal Approach
.
Journal of Medical Engineering and Technology.
(
2012
).
29.
Behbahani
S.
,
Dabanloo
N. J.
,
Detection of QRS Complexes in the ECG Signal Using Multiresolution Wavelet and Thresholding Method
.
Computing in Cardiology.
(
2011
).
30.
Jr. P. H. L.,
Geselowitz
D. B.
,
First Derivative of the Electrocardiogram
.
Circulation Research.
(
1962
).
31.
Ahlstrom
M. L.
,
Tompkins
W. J.
,
Automated High-Speed Analysis of Holter Tapes with Microcomputers
.
IEEE Transactions on Biomedical Engineering.
(
1983
).
32.
Zhang
F.
,
Lian
Y.
,
Novel QRS Detection by CWT for ECG Sensor
.
IEEE Biomedical Circuits and Systems Conference.
(
2007
).
33.
Arzeno
N. M.
,
Deng
Z. De.
,
Poon
C. S.
,
Analysis of First-Derivative Based QRS Detection Algorithms
.
IEEE Transactions on Biomedical Engineering.
(
2008
).
34.
Kher
R.
,
Vala
D.
,
Pawar
T.
,
Thakar
V. K.
,
Implementation of Derivative Based QRS Complex Detection Methods
.
3rd International Conference on Biomedical Engineering and Informatics.
(
2010
).
35.
Smith
S. W.
,
Chapter 3: ADC and DAC
.
The Scientist and Engineer’s Guide to Digital Signal Processing.
(
1997
).
36.
Smith
S. W.
,
Chapter 14: Introduction to Digital Filters
.
The Scientist and Engineer’s Guide to Digital Signal Processing.
(
1997
).
37.
Dong
J.
,
Jiang
W.
,
Design of Digital Filter on ECG Signal Processing
.
5th International Conference on Instrumentation and Measurement, Computer, Communication, and Control.
(
2015
).
38.
Asgari
S.
,
Mehrnia
A.
,
A Novel Low-Complexity Digital Filter Design for Wearable ECG Devices
.
PLOS One.
(
2017
).
39.
Bangham
J. A.
,
Marshall
S.
,
Image and Signal Processing with Mathematical Morphology
.
Electronics and Communication Engineering Journal.
(
2005
).
40.
MathWorks
.
Types of Morphological Operations
. (
2023
), available at: https://www.mathworks.com/help/images/morphological-dilation-and-erosion.html.
41.
Trahanias
P. E.
,
An Approach to QRS Complex Detection Using Mathematical Morphology
.
IEEE Transactions on Biomedical Engineering.
(
1993
).
42.
Yazdani
S.
,
Vesin
J. M.
,
Extraction of QRS Fiducial Points from the ECG Using Adaptive Mathematical Morphology
.
Digital Signal Processing: A Review Journal.
(
2016
).
43.
Zhang
F.
,
Lian
Y.
,
Electrocardiogram QRS Detection Using Multiscale Filtering Based on Mathematical Morphology
.
Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
(
2007
).
44.
Pal
S.
,
Mitra
M.
,
Empirical Mode Decomposition Based ECG Enhancement and QRS Detection
.
Computers in Biology and Medicine.
(
2012
).
45.
Narsimha
B.
,
Suresh
E.
,
Punnamchandar
K.
,
Sanjeeva Reddy
M.
,
Denoising and QRS Detection of ECG Signals Using Empirical Mode Decomposition
.
International Conference on Communications and Signal Processing.
(
2011
).
46.
Han
G.
,
Lin
B.
,
Xu
Z.
,
Electrocardiogram Signal Denoising Based on Empirical Mode Decomposition Technique: An Overview
.
Journal of Instrumentation.
(
2017
).
47.
Taouli
S. A.
,
Bereksi-Reguig
F.
,
Detection of QRS Complexes in ECG Signals Based on Empirical Mode Decomposition
.
Global Journal of Computer Science and Technology.
(
2011
).
48.
Johansson
M.
,
The Hilbert Transform.
(
2002
).
49.
Mans
K.
,
Hilbert Transform: Mathematical Theory and Applications to Signal Processing.
(
2015
).
50.
Sahoo
S.
,
Biswal
P.
,
Das
T.
,
Sabut
S.
,
De-Noising of ECG Signal and QRS Detection Using Hilbert Transform and Adaptive Thresholding
.
Procedia Technology.
(
2016
).
51.
Rodríguez
R.
,
Mexicano
A.
,
Bila
J.
,
Cervantes
S.
,
Ponce
R.
,
Feature Extraction of Electrocardiogram Signals by Applying Adaptive Threshold and Principal Component Analysis
.
Journal of Applied Research and Technology.
(
2015
).
52.
Afonso
V. X.
,
Wieben
O.
,
Tompkins
W. J.
,
Nguyen
T. Q.
,
Luo
S.
,
Filter Bank-Based ECG Beat Classification
.
19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
(
1997
).
53.
Electrical4U
,
Filter Bank: What is it?
(
2021
), available at: https://www.electrical4u.com/filter-bank/.
54.
Eminaga
Y.
,
Coskun
A.
,
Kale
I.
,
Hybrid IIR/FIR Wavelet Filter Banks for ECG Signal Denoising
.
IEEE Biomedical Circuits and Systems Conference.
(
2018
).
55.
Afonso
V. X.
,
Tompkins
W. J.
,
Nguyen
T. Q.
,
Luo
S.
,
ECG Beat Detection Using Filter Banks
.
IEEE Transactions on Biomedical Engineering.
(
1999
).
56.
Dallas
G.
,
Signal Processing, Fourier Transforms and Heisenberg
. (
2014
), available at: https://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/.
57.
Addison
P. S.
,
Wavelet Transforms and the ECG: A Review
.
Physiological Measurement.
(
2005
).
58.
Hassan
R. F.
,
Shaker
S. A.
,
ECG Signal De-Noising and Feature Extraction Using Wavelet Transform
.
International Journal of Engineering Trends and Technology.
(
2018
).
59.
Elgendi
M.
,
Jonkman
M.
,
De Boer
F.
,
R Wave Detection Using Coiflets Wavelets
.
IEEE 35th Annual Northeast Bioengineering Conference.
(
2009
).
60.
Park
J. S.
,
Lee
S. W.
,
Park
U.
,
R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope
.
Journal of Healthcare Engineering.
(
2017
).
61.
National Institute on Drug Abuse
,
Bringing the Power of Science to Bear on Drug Abuse and Addiction.
(
2007
), available at: https://nida.nih.gov/sites/default/files/1923-bringing-the-power-of-science-to-bear-on-drug-abuse-and-addiction.pdf.
62.
BrainFacts.org
,
The Neuron.
(
2012
), available at: http://www.brainfacts.org/Brain-Anatomy-and-Function/Anatomy/2012/The-Neuron.
63.
Steven
W. S.
,
Chapter 26: Neural Networks
.
The Scientist and Engineer’s Guide to Digital Signal Processing.
(
1997
).
64.
MathWorks
,
What is a Neural Network?
(
2019
), available at: https://www.mathworks.com/discovery/neural-network.html.
65.
Vijaya
G.
,
Kumar
V.
,
Verma
H. K.
,
ANN-Based QRS-Complex Analysis of ECG
.
Journal of Medical Engineering and Technology.
(
1998
).
66.
El-Khafif
S. H.
,
El-Brawany
M. A.
,
Artificial Neural Network-Based Automated ECG Signal Classifier
.
ISRN Biomedical Engineering.
(
2013
).
67.
Rabiner
L. R.
,
Juang
B. H.
,
An Introduction to Hidden Markov Models
.
IEEE ASSP Magazine.
(
1986
).
68.
Awad
M.
,
Khanna
R.
,
Chapter 5: Hidden Markov Model
.
Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers.
(
2015
).
69.
Daniel
J.
,
Martin
J. H.
,
Speech and Language Processing.
(
2018
).
70.
Coast
A. A.
,
Cano
G. G.
,
QRS Detection Based on Hidden Markov Modeling.
(
1989
).
71.
Sotelo
S.
,
Arenas
W.
,
Altuve
M.
,
QRS Complex Detection Based on Continuous Density Hidden Markov Models Using Univariate Observations
.
Journal of Physics: Conference Series.
(
2018
).
72.
Lee
Y. J.
,
Yeh
Y. R.
,
Pao
H. K.
,
An Introduction to Support Vector Machines
.
Handbook of Computational Finance.
(
2012
).
73.
MathWorks
,
Support Vector Machines for Binary Classification
. (
2023
), available at: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html.
74.
Williams
C.
,
Support Vector Machines.
(
2008
).
75.
Van
G. V.
,
Podmasteryev
K. V.
,
Algorithm for Detection the QRS Complexes Based on Support Vector Machine
.
Journal of Physics: Conference Series.
(
2017
).
76.
Barhatte
A. S.
,
Ghongade
R.
,
Thakare
A. S.
,
QRS Complex Detection and Arrhythmia Classification Using SVM
.
Communication, Control, and Intelligent Systems.
(
2015
).
77.
MathWorks
,
Classification Using Nearest Neighbors.
(
2023
), available at: https://www.mathworks.com/help/stats/classification-using-nearest-neighbors.html.
78.
Lantz
B.
,
Machine Learning with R.
(
2013
).
79.
Bramer
M.
,
Principles of Data Mining.
(
2016
).
80.
Zhang
Z.
,
Introduction to Machine Learning: K-Nearest Neighbors
.
Annals of Translational Medicine.
(
2016
).
81.
José
I.
,
K-Nearest Neighbors
(
2018
), available at: https://towardsdatascience.com/knn-k-nearest-neighbors-1-a4707b24bd1d.
82.
Saini
I.
,
Singh
D.
,
Khosla
A.
,
QRS Detection using K-Nearest Neighbor Algorithm (KNN) and Evaluation on Standard ECG Databases
.
Journal of Advanced Research.
(
2013
).
83.
He
R.
,
Wang
K.
,
Li
Q.
,
Yuan
Y.
,
Zhao
N.
,
Liu
Y.
,
Zhang
H.
,
A Novel Method for the Detection of R-peaks in ECG based on K-Nearest Neighbors and Particle Swarm Optimization
.
EURASIP Journal on Advances in Signal Processing.
(
2017
).
84.
Hamilton
P. S.
,
Tompkins
W. J.
,
Adaptive Matched Filtering for QRS Detection
.
IEEE Engineering in Medicine & Biology Society.
(
1988
).
85.
87.
Li
Y.
,
Yan
H.
,
Hong
F.
,
Song
J.
,
A New Approach of QRS Complex Detection Based on Matched Filtering and Triangle Character Analysis
.
Australasian Physical and Engineering Sciences in Medicine.
(
2012
).
88.
Olszewski
R. T.
,
Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data.
(
2001
).
89.
Flasinski
P.
,
Syntactic Pattern Recognition of ECG for Diagnostic Justification
.
Machine Graphics and Vision.
(
2018
).
90.
Mallat
S.
,
Hwang
W. L.
,
Singularity Detection and Processing with Wavelets
.
IEEE Transactions on Information Theory.
(
1992
).
91.
MathWorks
,
Wavelet Transform Modulus Maxima.
(
2019
), available at: https://www.mathworks.com/help/wavelet/ref/wtmm.html.
92.
Gong
W.
,
Xiang
C.
,
Mao
F.
,
Ma
X.
,
Liang
A.
,
Wavelet Modulus Maxima Method for on-line Wavelength Location of Pulsed Lidar in CO2 Differential Absorption Lidar Detection
.
Photonics Research.
(
2016
).
93.
Jalil
B.
,
Laligant
O.
,
Fauvet
E.
,
Beya
O.
,
Detection of QRS Complex in ECG Signal Based on Classification Approach
.
IEEE International Conference on Image Processing.
(
2010
).
94.
Kaplan Berkaya
S.
,
Uysal
A. K.
,
Sora
Gunal
E.,
Ergin
S.
,
Gunal
S.
,
Gulmezoglu
M. B.
,
A Survey on ECG Analysis
.
Biomedical Signal Processing and Control.
(
2018
).
This content is only available via PDF.
You do not currently have access to this content.