Survival analysis is a method for analyzing survival time data, starting from the first observation an event happens. A model to analyze survival is the Cox Proportional Hazard (CPH) regression model. The interesting thing about the CPH regression model is to estimate the parameter, apart from the maximum likelihood method, it can be done by using a numerical approach, namely the Newton-Raphson (NR) algorithm. This study aims to estimate the parameter of the CPH regression model with the NR algorithm. The research method used is a literature review of reference books and journals related to the CPH regression model and the NR algorithm. NR is a solution method of nonlinear equations by one starting point approach and approach it by look carefully at to the gradient. NR is best known as a method for finding the solution set of the roots of a real function and fast to reach the convergence, especially when the iteration starts quite close to the desired root. However, if the iteration starts far away from the sought root, this method may miss without warning. This method has an implementation that is usually notices and resolves convergence failures. Based on the results of the research, we get the constraint of the NR estimation, namely the approach point cannot be used if it’s an extreme point, because the value of the first derivative is zero. We get the CPH model estimator which is an iterative iteration until the desired convergence is achieved.

1.
A. A.
Fauziah
, Budiman,
D. L.
Safitri
, and
A.
Meiza
, “
Survival analysis with the Cox Proportional Hazard Method to determine the factors that affect how long the Large-Scale Social Distancing (LSSD) will applied in various areas affected by the covid-19 pandemic
” in
ICASMI 2020
,
IOP Conference Proceedings
1751
(
IOP Publishing Ltd
,
Bristol
,
2021
), pp.
1
9
.
2.
D. G.
Kleinbaum
and
M.
Klein
,
Survival Analysis: A Self-Learning Text, Third Edition
(
Springer Science+Business Media
,
New York
,
2011
), pp
97
157
.
3.
E. T.
Lee
and
J. W.
Wang
,
Statistical Methods for Survival Data Analysis, Third Edition
(
John Wiley and Sons
,
New Jersey
,
2003
), pp
1
5
.
4.
H. H.
Dukalang
,
Jambura J. Math.
1
(
1
),
36
42
(
2019
).
5.
D.
Collett
,
Modelling Survival Data in Medical Research, Third Edition
(
Chapman and Hall
,
New York
,
2015
), pp
1
16
.
6.
L. E.
Widyawati
and
R. D.
Bekti
,
J. Stat. Industri dan Komp.
5
(
1
),
26
36
(
2020
).
7.
J.
Kraisangka
and
M. J.
Druzdzel
,
Int. J. Approx. Reason.
103
,
195
211
(
2018
).
8.
N.
Soraya
,
Y. N.
Nasution
, and
S.
Wahyuningsih
,
Eksponensial
9
(
1
),
95
103
(
2018
).
9.
Y. S.
Astutik
and
D.
Tresnawan
,
J. of Math. Comput. Sci.
3
(
1
),
29
38
(
2017
).
10.
E.
Setiani
,
S.
Sudarno
, and
R.
Santoso
,
J. Gaussian.
8
(
1
),
93
105
(
2019
).
11.
F. E.
Ahmed
,
P. W.
Vos
, and
D.
Holbert
,
Molecular Cancer
6
,
1
12
(
2007
).
12.
S.
Matsuno
,
Y.
Uchida
,
T.
Ito
, and
T.
Ito
,
Int. J. Inf. Syst. Proj. Manag.
6
(
1
),
61
70
(
2018
).
13.
Handayani
,
M.
Fatekurohman
, and
D.
Anggraeni
,
Int. J. Adv. Eng. Res. Sci.
4
(
7
),
138
145
(
2017
).
14.
N.
Ata
and
M. T.
Sözer
,
J. Math Stat.
36
(
2
),
157
167
(
2007
).
15.
D. J.
Sari
,
D.
Lestari
, and
S.
Devila
, “
Pricing life insurance premiums using Cox regression model
” in
ISCPMS 2018
,
AIP Conference Proceedings
2168
(
AIP Publishing
,
Melville, NY
,
2019
), pp
1
8
.
16.
A. S.
Khinanti
,
S.
Sudarno
, and
T.
Wuryandari
,
J. Gaussian
10
(
2
),
303
314
(
2021
).
17.
H.
Sirait
and
E.
Rustam
, “
Penaksir Maksimum Likelihood Dengan Metode Iterasi Newton-Raphson
” in
Semirata 2013, Prosiding Semirata
(
FMIPA Unila
,
Lampung
,
2013
), pp
247
251
.
18.
Devitriani
,
M.
Kiftiah
, and
Yudhi
,
Bulletin Ilmiah Math. Stat. dan Terapannya
8
(
2
),
213
220
(
2019
).
This content is only available via PDF.
You do not currently have access to this content.