The aim of this study is to present the effectiveness of two algorithms, namely Simulated Annealing (SA) and Grey Wolf Optimization (GWO), in the optimization of the water-abrasive cutting process. The aim was to maximize the thickness of the cut by accurately predicting the optimum parameters of the water-abrasive cutting process, including the nozzle diameter, the concentration of the abrasive, and the feed rate. The objective function for the optimization has been derived using the Response Surface methodology. The results highlight the potential utility of the SA and GWO algorithms in the effective solution of optimization problems in the context of waterjet cutting processes.
REFERENCES
1.
E.
Kawecka
, ‘The Whale Optimization Algorithm of Abrasive Water Jet Machining Tool Steel Cutting
’, Procedia Comput Sci
, no. 1–8
, To be published.2.
A.
Perec
, ‘Optimization of Abrasive Water Jet (AWJ) cutting process accuracy
’, Procedia Comput Sci
, To be published.3.
A.
Perec
, ‘Multiple Response Optimization of Abrasive Water Jet Cutting Process using Response Surface Methodology (RSM
)’, Procedia Computer Science
, vol. 192
, pp. 931
–940
, 2021
, doi: .4.
A.
Radomska-Zalas
, ‘Application of the WASPAS method in a selected technological process
.’, Procedia Comput Sci
, To be published.5.
I.
Matoušová
, P.
Trojovský
, M.
Dehghani
, E.
Trojovská
, and J.
Kostra
, ‘Mother optimization algorithm: a new human-based metaheuristic approach for solving engineering optimization
’, Scientific Reports
, vol. 13
, no. 1
, p. 10312
, Jun. 2023
, doi: .6.
I.
Dumitrescu
and T.
Stützle
, ‘Combinations of local search and exact algorithms
’, Jan. 2003
, pp. 211
–223
.7.
A.
Nassef
, M.
Abdelkareem
, H.
Maghrabie
, and A.
Baroutaji
, ‘Review of Metaheuristic Optimization Algorithms for Power Systems Problems
’, Sustainability
, vol. 15
, p. 9434
, Jun. 2023
, doi: .8.
Simar
(2023
). ‘Gradient Descent Visualization
’ (https://www.mathworks.com/matlabcentral/fileexchange/35389-gradient-descent-visualization), MATLAB Central File Exchange.
Retrieved November 11, 2023.9.
‘
Find Global or Multiple Local Minima
’, [Online]. Available: https://www.mathworks.com/help/gads/example-finding-global-or-multiple-local-minima.html10.
A.
Gad
, ‘Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review
’, Archives of Computational Methods in Engineering
, vol. 29
, Apr. 2022
, doi: .11.
N.
Siddique
and H.
Adeli
, ‘Nature Inspired Computing: An Overview and Some Future Directions
’, Cognitive Computation
, vol. 7
, no. 6
, pp. 706
–714
, Dec. 2015
, doi: .12.
‘
Euler‟s diagram of the different classifications of metaheuristics
’, [Online]. Available: https://commons.wikimedia.org/wiki/File:Metaheuristics_classification.svg13.
B.
Morales-Castañeda
, D.
Zaldívar
, E.
Cuevas
, O.
Maciel-Castillo
, I.
Aranguren
, and F.
Fausto
, ‘An improved Simulated Annealing algorithm based on ancient metallurgy techniques
’, Applied Soft Computing
, vol. 84
, p. 105761
, 2019
, doi: .14.
S.
Mirjalili
, S. M.
Mirjalili
, and A.
Lewis
, ‘Grey Wolf Optimizer
’, Advances in Engineering Software
, vol. 69
, pp. 46
–61
, 2014
, doi: .15.
J.
Podhajecki
and E.
Kawecka
, ‘Możliwość zastosowania meta-heurystycznego algorytmu szarego wilka do optymalizacji parametrów procesu cięcia strugą wodno-ściern
;’, Nowoczesne Technologie w przemyśle. Kierunki zmian branży informatycznej.
16.
P.
Gupta
, V.
Kumar
, K. P. S.
Rana
, and P.
Mishra
, ‘Comparative study of some optimization techniques applied to Jacketed CSTR control
’, in 2015 4th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions)
, 2015
, pp. 1
–6
. doi: .17.
S.
Mirjalili
, ‘Real-coded Simulated Annealing
’, Jul. 2023
, [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/74016-real-coded-simulated-annealing18.
S.
Mirjalili
, ‘A new MATLAB optimization toolbox
’, Aug. 2022
, [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/55980-a-new-matlab-optimization-toolbox
This content is only available via PDF.
© 2024 AIP Publishing LLC.
2024
AIP Publishing LLC
You do not currently have access to this content.