Characteristics of the surface layer (SL) depend on different factors including phenomena that occur during its creation. They vary depending on the manufacturing technology that is used. Appropriately selected machining parameters make it possible to provide a surface with the required characteristics. This study presents a methodology, results and analysis of experimental tests carried out by electromachining and milling to determine the impact of the applied parameters on selected characteristics of the surface geometric structure (SGS). A comparison of those characteristics was performed for items made with the use of these technologies. Machining guidelines for devices operating under variable heat loading have been proposed.

1.
I.M.
Crichton
,
J.A.
McGeough
:
Theoretical, experimental and computational aspects of the electrochemical arc machining process
.
Annal. CIRP
,
1984
,
33
(
2
),
429
431
.
2.
R.
Święcik
,
R.
Polasik
:
Energetic aspects of the AEDG grinding process of Ti6Al4V titanium alloy
.
AIP Conf. Proc.
1 October
2018
;
2017
(
1
):
020031
.
3.
J.F.
Wilson
:
Practice and theory of electrochemical machining
.
Wiley
,
New York
,
1971
.
4.
B.
Nowicki
,
R.
Pierzynowski
,
S.
Spadło
,
Investigation of electro-discharge mechanical dressing (EDMD) of diamond abrasive wheels with conductive bonds using brush electrodes
.
Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture
, vol.
220
, No.
3
, pp.
421
428
,
2006
5.
B.
Nowicki
,
R.
Pierzynowski
,
S.
Spadło
,
New possibilities of machining and electrodischarge alloying of free-form surfaces
.
Journal of Materials Processing Technology.
109
,
3
(
2001
): pp.
371
376
.
6.
I.
Korkut
,
M.A.
Donertas
:
The influence of feed rate and cutting speed on the cutting forces, surface roughness and tool-chip contact length during face milling
.
MATER DESIGN.
No.
28
(
2007
): pp.
308
÷
312
.
7.
P.S.
Sreejith
,
B.K.A
Ngoi
:
Dry machining: Machining of the future
.
J. of Materials Processing Technology
101
,
2000
,
287
291
.
8.
T.
Leppert
,
T.
Paczkowski
,
R.
Polasik
:
Wpływ warunków chłodzenia na chropowatość powierzchni po frezowaniu (The influence of cooling conditions on surface roughness after milling), Mechanik
10/
2016
; DOI: .
9.
A.
Ruszaj
: Some aspects of electrochemical machining accuracy improvement.
Proceedings INSECT 2016: International Symposium on Electrochemical Machining Technology VUB Vrije Universiteit Brussel
.
Faculty of Engineering
. s.
29
35
.
10.
A.
Ruszaj
,
J.
Gawlik
,
S.
Skoczypiec
:
Electrochemical machining-special equipment and applications in aircraft industry
.
Management and Production Engineering Review.
2016
,
7
, (
2
),
34
41
.
11.
L.
Chen
:
Study on prediction of surface quality in machining process
.
Journal of materials processing technology
205
,
2008
,
439
450
.
12.
J.A.
McGeough
:
Principles of Electrochemical Machining
.
Chapman and Hall
,
Londyn
,
1974
.
13.
M. Li Z.
Chai
,
X.
Song
,
J.
Ren
,
Q.
Cui
:
Optimization and Simulation of Electrochemical Machining of Cooling Holes on High Temperature Nickel-Based Alloy
.
International Journal Electrochemical Science.
2021
,
16
,
1
15
.
14.
D.
Hasan
,
Y.
Oguzhan
,
K.
Bahattin
:
Controlling short circuiting, oxide layer and cavitation problems in electrochemical
.
Journal of Materials Processing Technology.
2018
,
262
,
585
596
.
15.
B.
He
,
D.Y.
Wang
,
Z.W.
Zhu
,
J.Z.
Li
,
D.
Zhu
:
Research on counter-rotating electrochemical machining of convex structures with different heights
.
International Journal of Advanced Manufacturing Technology.
2019
,
104
;
3119
27
.
16.
J.
Kozak
:
Computer simulation system for electrochemical shaping
.
J. of Materials Processing Technology
109
(
3
),
2001
,
354
359
.
17.
D.Y.
Wang
;
J.Z.
Li
;
D.
Zhu
:
Counter-rotating electrochemical machining of a convex array using a cylindrical cathode tool with multifold angular velocity
.
Journal of the Electrochemical Society.
2019
,
166
;
412
19
.
18.
C.
Zhang
,
Z.
Xu
,
Y.
Hang
,
J.
Xing
:
Effect of solution conductivity on tool electrode wear in electrochemical discharge drilling of nickel-based alloy
.
The International Journal of Advanced Manufacturing Technology.
2019
,
103
,
743
756
.
19.
B.
Bhattacharyya
,
M.
Malapati
,
J.
Munda
,
A.
Sarkar
:
2007. Influence of tool vibration on machining performance in electrochemical micro-machining of copper
.
International J. of Machine Tools & Manufacture
47
,
335
342
.
20.
S.J.
Ebeid
,
M.S.
Hewidy
,
T.A.
El-Taweel
,
A.H.
Youssef
:
ECM assisted by low-frequency vibrations
.
Proceeding of the 20th International Manufacturing Conference (IMC-20)
,
Cork, Ireland
,
2003
,
541
549
.
21.
S.J.
Ebeid
,
M.S.
Hewidy
,
T.A.
El-Taweel
,
A.H.
Youssef
:
Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology
.
J. Materials Processing Technology
149
,
2004
,
432
438
.
22.
J.
Kozak
,
K.P.
Rajurkar
,
S.
Malicki
:
Study of electrochemical machining utilizing vibrating tool electrode
.
Proceedings of the 16th International Conference on Computer Aided Production Engineering CAPE
,
Edinburgh, UK
,
2000
,
173
181
.
23.
T.
Paczkowski
,
J.
Sawicki
:
Experimental studies of vibration of the technological device for electrochemical machining of curvilinear surfaces
:
ENGINEERING MECHANICS
2017
,
23rd International Conference
/ ed.
Vladimir
Fuis
.
24.
J.
Sawicki
,
T.
Paczkowski
,
J.
Zdrojewski
:
Analysis of the effect of inertial forces of the electrolyte flow on the ECM machining effects of curvilinear rotary surfaces
.
Archive of Mechanical Engineering.
2022
, vol.
69
,
4
,
645
666
.
25.
J.
Sawicki
,
T.
Paczkowski
:
Electrochemical Machining of Curvilinear Surfaces of Revolution: Analysis, Modelling, and Process Control
.
Materials.
2022
,
15
,
21
(7751),
1
21
.
This content is only available via PDF.
You do not currently have access to this content.