Researchers are currently investigating the impact of collisions between solitons and external potentials, particularly the Nonlinear Schrödinger Equation (NLSE), which governs the soliton interaction with the potential in the presence of nonlinearity. In the case of discrete systems of one-dimensional NLSE, the behaviour and propagation of discrete solitons through a series of discrete sites or points are described. In this paper, we investigated the interaction of a discrete soliton with a localized impurity, namely the Gaussian external potential, using two methods: the variational approximation (VA) method and the direct numerical method. Discrete Cubic-Quintic NLSE is the main equation used to describe the phenomenon. This equation is non-integrable and does not have analytical solutions, but it can be reduced to ordinary differential equations using the variational approach. The VA method is applied by taking into account the Gaussian profile as the ansatz, which then produces evolution equations for soliton solutions of width, linear and quadratic phase-front correction and center-of-mass position. These equations play typical roles in describing the scattering process of the discrete soliton with the localized impurity. The direct numerical method of discrete NLSE is then performed to compare and validate the accuracy of the approximation results from the VA method. Considering different values of potential strengths and a fixed soliton initial velocity, it is found that the soliton can be transmitted, trapped or reflected after the interaction with external Gaussian potential. The findings imply that the VA method is a successful and practical way for examining the scattering of soliton in discrete NLSE on external potential.

1.
S. B.
Yamgoué
,
G. R.
Deffo
,
E.
Tala-Tebue
and
F. B.
Pelap
,
Chin. Phys. B
27
,
126303
(
2018
).
2.
M.
Kimura
,
Y.
Matsushita
and
T.
Hikihara
,
Phys. Lett. A
380
,
2823
2827
(
2016
).
3.
W.
Qi
,
Z. H.
Li
,
J. T.
Cai
,
G. Q.
Li
and
H. F.
Li
,
Phys. Lett A
382
,
1778
1786
(
2018
).
4.
B. A.
Umarov
,
N. H.
Ismail
,
M. S. A.
Hadi
and
T. H.
Hassan
,
1st International Conference on Applied & Industrial Mathematics and Statistics 2017
(
IOP Publishing
,
Bristol, EN
,
2017
), p.
012072
.
5.
J.
Kruse
and
R.
Fleischmann
,
J. Phys. B: At. Mol. Opt. Physics
50
,
055002
(
2017
).
6.
H. Q.
Hao
,
R.
Guo
and
J. W.
Zhang
,
Nonlinear Dynamic
88
,
1615
1622
(
2017
).
7.
V. N.
Likhachev
and
G. A.
Vinogradov
,
Theor. Math. Physics
201
,
1771
1778
(
2019
).
8.
H.
Qausar
,
M.
Ramli
,
S.
Munzir
,
M.
Syafwan
and
D.
Fadhiliani
,
10th Annual International Conference 2020
(
IOP Publishing
,
Bristol, EN
,
2021
), p.
012083
.
9.
S.
Iubini
and
A.
Politi
,
Chaos Solitons Fractals
147
,
110954
(
2021
).
10.
Y.
Ohta
and
B. F.
Feng
,
Phys. D: Nonlinear Phenomena
439
,
133400
(
2022
).
11.
A. A.
Balakin
,
A. G.
Litvak
,
V. A.
Mironov
and
S. A.
Skobelev
,
Phys. Rev. A
94
,
063806
(
2016
).
12.
A. G.
Litvak
,
V. A.
Mironov
,
S. A.
Skobelev
and
L. A.
Smirnov
,
J. Exp. Theor. Physics
126
,
21
34
(
2018
).
13.
L.
Morales-Molina
and
R. A.
Vicencio
,
Opt. Letters
31
,
966
968
(
2006
).
14.
V. A.
Brazhnyi
,
C. P.
Jisha
and
A. S.
Rodrigues
,
Phys. Rev. A
87
,
013609
(
2013
).
15.
R.
Morandotti
,
H. S.
Eisenberg
,
D.
Mandelik
,
Y.
Silberberg
,
D.
Modotto
,
M.
Sorel
,
C.R.
Stanley
and
J. S.
Aitchison
,
Opt. Letters
28
,
834
836
(
2003
).
16.
T. X.
Tran
and
Q.
Nguyen-The
,
J. Light. Technology
34
,
4105
4110
(
2016
).
17.
N. A. B.
Aklan
and
B.
Umarov
,
7th International Conference on Research and Education in Mathematics
(
IEEE
,
Manhattan, NY
,
2015
), pp.
93
96
.
18.
T.
Uthayakumar
,
L.
Al Sakkaf
and
U.
Al Khawaja
,
Front. Physics
8
,
596886
(
2020
).
19.
N. A. B.
Aklan
and
B. A.
Umarov
,
22nd National Symposium on Mathematical Sciences
(
AIP Publishing
,
Melville, NY
,
2015
), p.
020022
.
20.
N. A. B.
Aklan
and
B. A.
Umarov
,
37th International Conference on Quantum Probability and Related Topics
(
IOP Publishing
,
Bristol, EN
,
2017
), p.
012024
.
21.
N. A. B.
Aklan
,
F. A.
Faizar
and
B. A.
Umarov
,
28th National Symposium on Mathematical Sciences
(
IOP Publishing
,
Bristol, EN
,
2021
), p.
012016
.
22.
C. L.
Grimshaw
,
S. A.
Gardiner
and
B. A.
Malomed
,
Phys. Rev. A
101
,
043623
(
2020
).
23.
D.
Anderson
,
Phys. Rev. A
27
,
3135
3145
(
1983
).
24.
P. G.
Kevrekidis
, Volume
232
(
Springer
,
Berlin
,
2009
).
25.
A.
Mahalingam
and
M. S. M.
Rajan
,
Opt. Fiber Technology
25
,
44
50
(
2015
).
26.
S. S.
Veni
,
M. S. M.
Rajan
and
A.
Vithya
,
Optik
242
,
167094
(
2021
).
This content is only available via PDF.
You do not currently have access to this content.