This paper presents a machine learning approach to predict damping force as a function of its mechanical design parameters in a magnetorheological (MR) damper. The employed machine learning method is extreme learning machine. The studied MR damper is equipped by an MR valve with serpentine flux. The training data is firstly generated using FEMM (Finite Element Magnetic Method) software by varying several parameters. Then, the obtained magnetic flux density is translated into damping force by employing the steady state pressure drop equations. The results of the FEMM simulation and the calculation of the damping force are firstly evaluated to check the pattern. Then, the machine learning is applied. This performance design is built with extreme learning machine algorithms in Python. After simulation, hidden node number of 20 is selected because the simple neural network structure, high R-squared value, and low RMSE compared other hidden node numbers. In general, the R-squared value for hidden node number more than 10 is higher than 0.8 showing a good agreement between the reference data and the predicted values.

1.
D.
Cruze
,
H.
Gladston
,
S.
Loganathan
,
T.
Dharmaraj
,
S.M.
Solomon
,
Study on Magnatec oil-based MR fluid and its damping efficiency using MR damper with various annular gap configurations, Energy, Ecol
.
Environ
.
6
(
2021
)
44
54
. .
2.
R.
Pierce
,
S.
Kaul
,
J.
Friesen
,
T.
Morgan
,
Mountain bike rear suspension design: Utilizing a magnetorheological damper for active vibration isolation and performance
,
Int. J. Acoust. Vib
.
25
(
2021
)
504
512
. .
3.
A.
Rossi
,
F.
Orsini
,
A.
Scorza
,
F.
Botta
,
N.
Belfiore
,
S.
Sciuto
,
A Review on Parametric Dynamic Models of Magnetorheological Dampers and Their Characterization Methods
,
Actuators
.
7
(
2018
)
16
. .
4.
S.
Sun
,
J.
Yang
,
P.
Wang
,
M.
Nakano
,
L.
Shen
,
S.
Zhang
,
W.
Li
,
Experimental Study of a Variable Stiffness Seat Suspension Installed With a Compact Rotary MR Damper, Front
.
Mater
.
8
(
2021
)
1
10
. .
5.
Z.
Li
,
Y.
Gong
,
J.
Wang
,
Optimal control with fuzzy compensation for a magnetorheological fluid damper employed in a gun recoil system
,
J. Intell. Mater. Syst. Struct
.
30
(
2019
)
677
688
. .
6.
Y.
Fang
,
Optimal Control of Semiactive Two-Stage Vibration Isolation Systems for Marine Engines
,
Shock Vib
. 2021 (
2021
). .
7.
D.
Senkal
,
H.
Gurocak
,
Haptic joystick with hybrid actuator using air muscles and spherical MR-brake
,
Mechatronics
.
21
(
2011
)
951
960
. .
8.
H.X.
Ai
,
D.H.
Wang
,
W.H.
Liao
,
Design and Modeling of a Magnetorheological Valve with Both Annular and Radial Flow Paths
,
J. Intell. Mater. Syst. Struct
.
17
(
2006
)
327
334
. .
9.
N.
Najmaei
,
M.R.
Kermani
,
R. V.
Patel
,
Suitability of Small-Scale Magnetorheological Fluid-Based Clutches in Haptic Interfaces for Improved Performance, IEEE/ASME Trans
.
Mechatronics
.
20
(
2015
)
1863
1874
. .
10.
D.H.
Wang
,
H.X.
Ai
,
W.H.
Liao
,
A magnetorheological valve with both annular and radial fluid flow resistance gaps
,
Smart Mater. Struct
.
18
(
2009
)
115001
. .
11.
A.
Grunwald
,
A.G.
Olabi
,
Design of magneto-rheological (MR) valve, Sensors Actuators
,
A Phys
.
148
(
2008
)
211
223
. .
12.
F.
Imaduddin
,
S.
Amri Mazlan
,
M.
Azizi Abdul Rahman
,
H.
Zamzuri
,
Ubaidillah
,
B.
Ichwan
,
A high performance magnetorheological valve with a meandering flow path, Smart Mater
.
Struct
.
23
(
2014
)
065017
. .
13.
D.
Utami
,
Ubaidillah
,
S.
Mazlan
,
F.
Imaduddin
,
N.
Nordin
,
I.
Bahiuddin
,
S.
Abdul Aziz
,
N.
Mohamad
,
S.-B
.
Choi, Material Characterization of a Magnetorheological Fluid Subjected to Long-Term Operation in Damper, Materials (Basel)
.
11
(
2018
)
2195
. .
14.
A.Y.
Abd Fatah
,
S.A.
Mazlan
,
T.
Koga
,
H.
Zamzuri
,
F.
Imaduddin
,
Design of magnetorheological valve using serpentine flux path method
,
Int. J. Appl. Electromagn. Mech
.
50
(
2016
)
29
44
. .
15.
M.H.
Idris
,
F.
Imaduddin
,
Ubaidillah
,
S.A.
Mazlan
,
S.B.
Choi
,
A concentric design of a bypass magnetorheological fluid damper with a serpentine flux valve
,
Actuators
.
9
(
2020
)
1
21
. .
16.
G.J.
Yu
,
S.J.
Zhu
,
C.
Bin Du
,
L.Y.
Wang
,
J.C.
Huang
,
Design and Performance Test of a Magnetic Rate Controlled Stage Damper
,
Front. Mater
.
8
(
2021
)
1
11
. .
17.
F.
Imaduddin
,
S.A.
Mazlan
,
Ubaidillah
,
H.
Zamzuri
,
A.Y.A.
Fatah
,
Testing and parametric modeling of magnetorheological valve with meandering flow path
,
Nonlinear Dyn
.
85
(
2016
)
287
302
. .
18.
M.K.A.
Saleh
,
M.
Nejatpour
,
H.
Yagci Acar
,
I.
Lazoglu
,
A new magnetorheological damper for chatter stability of boring tools
,
J. Mater. Process. Technol
.
289
(
2021
)
116931
. .
19.
Z.
Parlak
,
T.
Engin
,
International Journal of Mechanical Sciences Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation
,
Int. J. Mech. Sci
.
64
(
2012
)
22
31
. .
20.
I.
Bahiuddin
,
S.B.
Wibowo
,
M.
Syairaji
,
J.T.
Putra
,
C.A.
Pandito
,
A.F.
Maulana
,
R.M.S.
Prastica
,
N.
Nazmi
,
A Systematic Approach to Predict the Behavior of Cough Droplets Using Feedforward Neural Networks Method,
Fluids
.
6
(
2021
)
76
. .
21.
K.D.
Saharuddin
,
M.H.
Mohammed Ariff
,
I.
Bahiuddin
,
S.A.
Mazlan
,
S.A.
Abdul Aziz
,
N.
Nazmi
,
A.Y.
Abdul Fatah
,
K.
Mohmad
,
Constitutive models for predicting field-dependent viscoelastic behavior of magnetorheological elastomer using machine learning, Smart Mater
.
Struct
.
29
(
2020
)
087001
. .
22.
N.
Wagner
,
J.M.
Rondinelli
,
Theory-Guided Machine Learning in Materials Science, Front
.
Mater
.
3
(
2016
)
186
273
. .
This content is only available via PDF.
You do not currently have access to this content.