The simultaneous provision of electrical and thermal energy is made possible using PVT technology. By removing heat through the coolant, this dual action can lower the operating temperature of the panel. By lowering the operating temperature of the panel in this manner, the electrical efficiency of the solar cell may be enhanced. This study aims to determine how the dispersion of copper (Cu) and nanoparticles in pure water impact this PVT system’s performance. The research was conducted using modeling in a CFD approach derived from developing an energy equilibrium system in PVT solar cells. ANSYS18.2 is used to represent the temperature distribution that takes place in the collector. The validity of the tested and created numerical model is examined using the ANOVA approach. According to the results, using Cu-water nanofluids at a concentration of 1 percent can increase system performance more than using alternative designs. The findings also demonstrate that thermal and electrical efficiency may be increased by 52.75 percent and 11.927 percent, respectively, by utilizing a volume fraction of 1 percent of Cu nanoparticles. Comparing this gain in efficiency to the addition of other concentrations, the difference is incredibly minor.

1.
Y.
Tian
and
C. Y.
Zhao
,
Appl. Energy
104
,
538
(
2013
).
2.
M.
Vaka
,
R.
Walvekar
,
A. K.
Rasheed
,
M.
Khalid
, and
H.
Panchal
,
IEEE Access
8
,
58227
(
2019
).
3.
M.
Hissouf
,
M.
Feddaoui
,
M.
Najim
, and
A.
Charef
,
Sol. Energy
199
,
115
(
2020
).
4.
F.
Crisostomo
,
N.
Hjerrild
,
S.
Mesgari
,
Q.
Li
, and
R. A.
Taylor
,
Appl. Energy
193
,
1
(
2017
).
5.
C.
Lamnatou
and
D.
Chemisana
,
Renew. Energy
105
,
270
(
2017
).
6.
S.
Nayak
,
A.
Kumar
,
A. K.
Singh
, and
G. N.
Tiwari
,
Int. J. Sustain. Energy
33
,
336
(
2014
).
7.
E.
Çiftçi
,
A.
Khanlari
,
A.
Sözen
,
İ.
Aytaç
, and
A. D.
Tuncer
,
Renew. Energy
180
,
410
(
2021
).
8.
Z. A.
Alrowaili
,
M.
Ezzeldien
,
N. M.
Shaaalan
,
E.
Hussein
, and
M. A.
Sharafeldin
,
J. Energy Storage
50
,
104675
(
2022
).
9.
P. S.
Kishore
,
V.
Sireesha
,
V.
Sree Harsha
,
V. Dharma
Rao
, and
A.
Brusly Solomon
,
Mater. Today Proc
.
27
,
610
(
2020
).
10.
S.
Peng
,
Y.
Kon
, and
H.
Watanabe
,
Sustain
.
14
, (
2022
).
11.
H.
Ramdani
and
C.
Ould-Lahoucine
,
Energy Convers. Manag
.
222
,
113238
(
2020
).
12.
A. N.
Al-Shamani
,
K.
Sopian
,
S.
Mat
,
H. A.
Hasan
,
A. M.
Abed
, and
M. H.
Ruslan
,
Energy Convers. Manag
.
124
,
528
(
2016
).
13.
A. R.
Kumar
,
Y. J.
Raja
K
,
T. K.
Raja
,
A.
Professor
, and
U.
Students
, IJRAR1904893
Int. J. Res. Anal. Rev. Www.Ijrar.Org
792
,
16
(
2019
).
14.
H. A.
Kazem
,
Case Stud. Therm. Eng
.
13
,
100401
(
2019
).
15.
S. D.
Prasetyo
,
A. R.
Prabowo
, and
Z.
Arifin
,
Heliyon
9
,
e13390
(
2023
).
16.
S. D.
Prasetyo
,
A. R.
Prabowo
, and
Z.
Arifin
,
Mater. Today Proc
.
63
,
S1
(
2022
).
17.
H.
Fayaz
,
N. A.
Rahim
,
M.
Hasanuzzaman
,
A.
Rivai
, and
R.
Nasrin
,
Sol. Energy
179
,
135
(
2019
).
18.
S. D.
Prasetyo
,
A. R.
Prabowo
, and
Z.
Arifin
,
Int. J. Heat Technol
.
40
,
415
(
2022
).
19.
N. K.
Baranwal
and
M. K.
Singhal
, in
Adv. Clean Energy Technol
. (
Springer, Singapore
,
2021
), pp.
127
139
.
20.
S. D.
Prasetyo
,
E. P.
Budiana
,
A. R.
Prabowo
, and
Z.
Arifin
,
Civ. Eng. J
.
9
,
2989
(
2023
).
21.
Z.
Arifin
,
S. D.
Prasetyo
,
A. R.
Prabowo
,
D. D. D. P.
Tjahjana
, and
R. A.
Rachmanto
,
Open Eng
.
11
,
1076
(
2021
).
22.
M. A. M.
Rosli
,
Y. J.
Ping
,
S.
Misha
,
M. Z.
Akop
,
K.
Sopian
,
S.
Mat
,
A. N.
Al-Shamani
, and
M. A.
Saruni
,
J. Adv. Res. Fluid Mech. Therm. Sci
.
52
,
12
(
2018
).
23.
H.
Khoshvaght
,
M.
Delnavaz
, and
M.
Leili
,
J. Water Process Eng
.
42
,
102107
(
2021
).
24.
A.
Taheri
,
M.
Kazemi
,
M.
Amini
,
M.
Sardarabadi
, and
A.
Kianifar
,
J. Therm. Anal. Calorim
.
143
,
4025
(
2021
).
25.
A.
Zabihi Sheshpoli
,
O.
Jahanian
,
K.
Nikzadfar
, and
M. Aghajani
Delavar
,
Sol. Energy
215
,
108
(
2021
).
26.
A. N.
Özakın
and
F.
Kaya
,
Sol. Energy
197
,
199
(
2020
).
This content is only available via PDF.
You do not currently have access to this content.